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The Linear Session Abstract Machine
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We introduce the Linear SAM, an abstract machine for mechanically executing session typed programs that precisely correspond to
Linear Logic CLL via the propositions-as-types correspondence. In this basic computation model, programs are naturally interpreted
as concurrent systems. However, inspired by a fine-grained analysis of proof conversion and focalisation, we derive in this work a
fully deterministic sequential evaluation strategy, which may be implemented via co-routining and session buffered communication.
Our development targets a language extending CLL with second-order quantifiers (polymorphism) and inductive types (recursion and
co-recursion), which supports general higher-order polymorphic functional / session-based computation. A remarkable feature of
the SAM’s design is its ability to seamlessly coordinate sequential session behaviour with concurrent session behaviour within the
same program. We provide an intuitive discussion of the SAM structure and its underlying design, and state and prove its adequacy,
showing that SAM executions always correspond to CLL proof reductions, and that any CLL proof reduction is simulated by the
SAM execution. To that end, we technically factor our development via an intermediate logical language CLLB, which extends CLL
with a “buffered” cut construct, and bridges between the logical/algebraic level and the lower-level machine architecture. We also
discuss a proof-of-concept implementation of the SAM, that suggests its potential to support the native linear execution of general

session-functional linear programming languages with concurrency.
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— Functional languages; Compilers; Semantics; - Computing methodologies — Concurrent programming languages.
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1 INTRODUCTION

In this work, we build on the linear logic based foundation for session types [14, 16, 83] to construct SAM, an abstract
machine specially designed for executing session processes typed by (classical) linear logic CLL. Although motivated by
the session type discipline, which originally emerged in the realm of concurrency and distribution [31, 36, 38, 39], a basic
motivation for designing the SAM was to provide an efficient deterministic execution model for the implicitly sequential
session-typed program idioms that often proliferate in concurrent session-based programming. It is well-known that in
a world of fine-grained concurrency, building on many process-based encodings of concepts such as (abstract) data
types, functions, continuations, and effects [11, 54, 61, 74, 75, 78, 80], large parts of the code turn out to be inherently

sequential, further justifying the foundational and practical relevance of our results. A remarkable feature of the
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2 Luis Caires and Bernardo Toninho

SAM’s design is therefore its potential to efficiently coordinate sequential with full-fledged concurrent behaviours in
session-based programming.

Leveraging early work relating linear logic with the semantics of linear and concurrent computation [1, 2, 7], the
proposition-as-types (PaT) interpretation [84] of linear logic proofs as a form of well-behaved session-typed nominal
calculus has motivated many developments since its inception [5, 13, 77, 78]. We believe that, much how the A-calculus
is deemed a canonical typed model for functional (sequential) computation with pure values, the session calculus can
be accepted as a fairly canonical typed model for stateful concurrent computation with linear resources, well-rooted in
the trunk of “classical” Type Theory. The PaT interpretation of session processes also establishes a bridge between
more classical theories of computation and process algebra via logic.

It also reinstates Robin Milner’s view of computation as interaction [53], “data-as-processes” [54] and “functions-as-
processes” [52], now in the setting of a tightly typed world, based on linear logic, where types may statically ensure
key properties like deadlock-freedom, termination, and correct resource usage in stateful programs. Session calculi are
motivating novel programming language design, bringing up new insights on typeful programming [20] with linear and
behavioral types, e.g., [5, 23, 27, 68]. Most systems of typed session calculi have been formulated in process algebraic
form [31, 36, 38], or on top of concurrent A-calculi with an extra layer of communication channels (e.g., [32]). Logically
inspired systems such as those discussed in this paper (e.g., [14, 16, 26, 30, 44, 64, 68, 83]) are defined by a logical proof
/ type system where proof rules are seen as witnesses for the typing of process terms, proofs are read as processes,
structural equivalence is proof conversion and computation corresponds to cut reduction. These formulations provide a
fundamental semantic foundation to study the model’s expressiveness and meta-theory, but of course do not directly
support the concrete implementation of programming languages based on them.

Although several programming language implementations of nominal calculi based languages have been proposed
for some time (e.g. [62]), with some introducing abstract machines as the underlying technology (e.g., [51, 79]), we
are not aware of any prior design proposal for an abstract machine for reducing session processes exploiting deep
properties of a source session calculus, as e.g., the CAM [24] the LAM [46], or the KM [45], which also explore the
Curry-Howard correspondences, may reclaim to be, respectively for call-by-value cartesian-closed structures, linear
logic, and the call-by-name A-calculus.

The SAM reduction strategy explores a form of “asynchronous” session interaction that essentially expresses that,
for processes typed by the logical discipline, sessions are always pairwise causally independent, in the sense that
immediate communication on some session is never blocked by communication on other different session. This property
is captured syntactically by prefix commutation equations, valid commuting conversions in the underlying logic: adding
equations for such laws explicitly to process structural congruence keeps observational equivalence of CLL processes
untouched [58]. Combining insights related to focalisation and polarisation in linear logic [4, 49, 60], we realize that all
communication in any session may be operationally structured as the exchange of bundles of positive actions from
sender to receiver, where the roles sender/receiver flip whenever the session type swaps polarity. Communication may
then be mediated by message buffers, first filled up by the sender (“write-biased” scheduling), and at a later time emptied
by the receiver. Building on these observations and on key properties of linear logic proofs leveraged in well-known
purely structural proofs of progress [14, 16, 68], we identify a sequential and deterministic reduction strategy for CLL
typed processes, based on a form of co-routining where continuations are associated to session queues, and “context
switching” between co-routines occurs whenever polarity flips.

That such strategy works at all, preserving all the required correctness properties of the CLL language does not

seem immediately obvious, given that processes may sequentially perform multiple actions on many different sessions,
Manuscript submitted to ACM
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The Linear Session Abstract Machine 3

meaning that multiple context switches must be interleaved. The bulk of our paper is then devoted to establishing all
such properties in a precise technical sense. We believe that the SAM may provide a principled foundation for safe
execution environments for programming languages combining functional, imperative and concurrent idioms based on
session and linear types, as witnessed in practice for Rust [42], (Linear) Haskell [9, 43, 50], Move [10], and in research
languages [27, 41, 66]. To further substantiate these views we have developed a proof-of-concept implementation of the

SAM, integrated as an alternative backend for CLASS [68], an experimental language for session-based programs [18].

1.1 Outline and Contributions

In Section 2 we briefly review the session-typed calculus CLL, which exactly corresponds to (classical) Linear Logic with
mix, second-order quantifiers, and (co)inductive types. In Section 3 we discuss the motivation and design principles of
the core SAM, gradually presenting its structure for the language fragment corresponding to session types without
the exponentials and polymorphism, which will be introduced later. Even if the core SAM structure and transition
rules are fairly simple, the required proofs of correctness are more technically involved, and require progressive
build up. Therefore, in Section 4 we first bridge between CLL and SAM via an intermediate logical language CLLB,
which introduces cuts with explicit queues. We show preservation (Theorem 4.8) and progress (Theorem 4.10) for
CLLB, and prove that there is a two way simulation between CLLB and CLL via a strong operational correspondence
(Theorem 4.15).

Given this correspondence, in Section 5 we state and prove the adequacy of the SAM for executing CLL processes,
showing soundness wrt. CLLB (Theorem 5.6) and CLL (Theorem 5.7), and progress / deadlock absense (Theorem 5.8).
In Section 6 we modularly extend the previous results to the exponentials, and revise the core SAM by introducing
explicit environments, stating the associated adequacy results (Theorem 6.7 and Theorem 6.8).

In Section 7 we discuss a uniform and modular extension of the SAM towards concurrency, and present the
related correctness results. This demonstrates how the SAM design naturally allows sequential and concurrent session
behaviours to be smoothly coordinated, while preserving the basic safety properties of the type system, namely
soundness (Theorem 7.5) and progress / deadlock-freedom (Theorem 7.6). In Section 8 we briefly describe a proof-of-
concept implementation of the SAM and discuss its potential to support the native linear execution of general linear
programming languages with concurrency. We illustrate with some examples, including a lazy stream-based prime
sieve, System-F style encoding of recursive types, Ackermann computation on recursively defined natural numbers, and

an infinite precision binary counter. We conclude in Section 9 by a discussion of related work and additional remarks.

2 THE CLL LANGUAGE AND ITS TYPE SYSTEM

We start by revisiting the language and type system of CLL, and its operational semantics. The system is based on a PaT
interpretation of Girard’s linear logic [34]; in this work we follow standard notations for classical linear logic proofs as
processes [12, 16, 66, 68, 83], where types correspond to propositions and language constructs to proof rules. We start

by types and duality.
Definition 2.1 (Types). Types A, B are defined by
AB:= 1 |1 |A®B |A®B | &uerAr | ®eLAe |'1A | ?A]
X |X |3XA |VXA |uXA | vX.A

Types comprise of the units (1, L), multiplicatives (®, *®), additives (®,cr Ar, &eeLAr), exponentials (!, ?), type
variables, (X, Y) and dual type variables (X, Y), quantifiers (3, V) and inductive types (y, v). We adopt here an applied
Manuscript submitted to ACM
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4 Luis Caires and Bernardo Toninho

P,Q == 0
| PlQ | x(y); P 1A
| fwd x y | 7x;P ?2A
| cut {P |x:A| Q} | cut! {y.P|'x: Al Q}
| close x 1 | callx(z); 0
| wait x; P 1 | sendty x(B); P IX.A
| case x {|#f € L:Pp} &yelAr | recvty x(X); P VX.A
| #l x; P DrerAr | unfold, x;P UX.A
| send x(y.P); Q A®B | recX(z,w);P[x,§j] vX.A
| recv x(z); P A®B | unfold, x; P vX.A

Fig. 1. Program terms (processes) of CLL, and hint to type assigned to subject channel x

version of the additive types, where e.g. the primitive linear logic (binary) sum type A & B is replaced by a finite
collection of labeled options @y Ap. There is notion of polarity for types [49] where the positive types are 1, ®, ®, and
|, and the negative types are 1,9, & and ?. We write A* (resp. A™) to assert that A is a positive (resp. negative) type.

Definition 2.2 (Duality). Type duality A — A is the involution on types induced by linear logic negation:

= X 1 = 1 A®B = A®B ®reLAr = &peLAr
= X 1A = 7B IXA = VXA XA vX.A

IRt

Duality captures the symmetry of behaviour in binary process interaction, as manifest in the cut rule. We may
abbreviate A’® Bby A —o B. We denote by {T/X}A the capture-free substitution of type X for variable X in type A.
Notice that {T/X}A = {T/X}A.

Definition 2.3 (Processes). The syntax of CLL program terms (processes) P, Q is defined in Figure 1.

The typing rules of CLL are presented in Figures 2, 3 and 4. Typing judgements have the form P +, A;T, where P is a
process and the typing context A; T is dyadic [4, 8, 14, 59]: both A and T assign types to names, the context A is handled
linearly while the exponential context I is unrestricted. This means that no implicit contraction or weakening is allowed
on A. The type system exactly corresponds, via a propositions-as-types [14, 16, 82] correspondence, to second-order
classical linear logic with mix, extended with inductive/coinductive types (cf. [65, 68, 76]). The index 7 is a finite map

from type variables to coinduction judgements, used in typing rules for corecursive types, further discussed below.

2.1 ldentity - Mix, Cut, Inaction

The process 0 denotes the inaction (do-nothing, terminated) process, typed in the empty linear context (rule [T0]).
The mix P || Q denotes independent parallel composition of processes P and Q (rule [Tmix]), whereas the cut {P |x:A| Q}
denotes parallel composition of communicating processes P and Q, where P and Q share exactly one channel x, typed
as Ain P and A in Q (rule [Tcut]). In many situations, a cut type annotation may be easily inferred from the context, in
such cases we may omit it to light notation, and write cut {P |x| Q}.
The forwarder fwd x y captures bidirectional forwarding between dually typed names x and y (rule [Tfwd]), which
operationally consists in renaming x for y.

Manuscript submitted to ACM
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The Linear Session Abstract Machine 5

[TO0] P+AN;T QrAT

e [Tmix]
PllQ +-A,A;T

0+ O;T

[Tfwd]  PrA,x:AT QrAx:AT [Tcut]
cut {P[x: A|Q} v A", A;T

fwd x y l—x:Z,y:A;F

S ) QrAT (T1]
close x +x: 1;T wait x;Q A x: L;T
PrrAx:ApT (allt el FA,x:As;T #leL
r sl ( ) T 0 # [To]
case x {|#€ € L:Pp} + A, x : &perAp;T #lx;Q FN,x: ®pepApT
Pi+rAy:A;T Pyr Ay x:BT FAz:Ax:BT
! [Te] < (5]
send x(y.P1); P2 + A1,A2,x : A® B;T recv x(z); Q0+ A,x : A9 B;T
Pry:AT FAT,x A

Py AT gy QFALXA
x(y); P +x AT 2%;Q F A x ?A;T

Pry: AT FAT,x: A QFrAz:AT,x: A

Y Q x [Teut!] [Teall]
cut! {y.P |!x: A| Q} F A;T call x(2);Q F AT x: A
Fig. 2. Typing Rules I: CLL.
PrAx:{B/X}A;T FAx:AT
{B/X} (T3] Q (V]
sendty x(B); P + A, x : 3X.A;T recvty x(X); Q F A, x : VX.A;T
Fig. 3. Typing Rules II: Polymorphism.
Pry Az: AT 7' =1X(z,w) = Az:Y;T n=n",X(x7g) — Ax:Y;T
— = — ———— [Tcorec] — — ——— [Tvar]
rec X(z,w); P [x,§] by {g/W}A, x : vY . A; {g/w}T X(z,w) by {W/§}A, z : Y;{w/y}T

Py Ax: {uX.A/X}A;T
unfold, x; P by A, x : uX.A;T

[Tu]

Fig. 4. Typing Rules IlI: Induction and Coinduction.

2.2 Multiplicatives - Send, Receive, Close, Wait

Process close x explicitly initiates termination of the session, while wait x; P represents the dual action of waiting for
session termination, as typed by rules [T1] and [T].

Process send x(y.P); P2 outputs on channel x a fresh channel y performing a behaviour specified by P1, and continues
as P afterwards (rule [T®]). The process recv x(z); Q receives from x a channel on input parameter z and continues as
Q, which will have access and use z (rule [T’®]). When such send and receive processes interact on dual endpoints of a
session x, the behaviour defined by P; is linearly passed from sender to receiver, via a dual action synchronisation.

Manuscript submitted to ACM
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6 Luis Caires and Bernardo Toninho

Notice that the sent name y is bound in send x(y.P;); P, with scope P, and the input parameter name z is bound in

recv x(z); Q with scope Q.

2.3 Additives

Process #| x; P selects label #l on session x and continues as process P. It is typed by a labeled sum type of the form
®¢crAr (rule [T@]). Such label selection always acts on a offer process case x {|#f € L:Pp} holding the dual endpoint of
session x. The offer process branches to continuation P, depending if the selected label is #¢, and would be typed by the
offer type &perAr (rule [T&]).

2.4 Exponentials

Processes !x(y); P, ?x; Q and call x(z); Q embody replicated processes and their invocations. Replicated processes
represent non-linear computations, comparable to exponential (or intuitionistic) values as available in functional
languages, that may be dropped or used an arbitrary number of times.

Process !x(y); P represents of a process that may be called at x, to yield a fresh new behavior at y, as defined by P
(depending on no linear sessions - rule [T!]).

Process ?x; Q and call x(z); Q allow for replicated servers to be activated and subsequently used as (fresh) linear
sessions (rules [T?] and [Tcall]). Composition of exponentials is achieved by the cut! {y.P |!x : A| Q} process, where P

cannot depend on linear sessions and so may be safely replicated.

2.5 Quantifiers - Polymorphism

The process sendty x(T); P sends a type T on along x and continues as P and is assigned type 3X.A (rule [T3]). The
matching receiver process recvty x(X); Q receives the sent type on x, instantiating type input parameter X in Q, which
provides the continuation. The type parametric receiver is assigned type VX .A. Existential and universal types allow us
to introduce type abstraction and parametricity in our session typed language [13, 68, 82, 83]. In particular, the resulting

language has the same expressive power as Linear System F [78].

2.6 Induction and Coinduction - Recursion

We follow the presentation of inductive / coinductive session types developed for classical linear logic [65, 68], which
in turn built on the intuitionistic version [72, 76]. Corecursive processes introduced by rule [Tcorec] have the form
rec X(z,w); P [x, §]. In such a process, the subterm rec X(z, w); P denotes a (co) recursively defined parametric process
abstraction where the parameters z, w are bound in the body P, where they may be used. The process variable X is also
bound in P, and occurs free in P to express recursive calls, each of the form X (a, l;) for some parameters (a, l_;) In the
whole process rec X(z, w); P [x, ], the free names x, § are passed as arguments to the current call on the recursive
process. The coinductive behaviour of type vY.A of a corecursive process is always offered by the first argument channel
z. In rule [Tcorec] to type the body P of a corecursive process, the map 7 is extended with a coinductive hypothesis
that binds the process variable X to the current typing context A,z : Y;T. Whenever a call to X appears inside the
body P we rely on 1(X) to recover the appropriate co-inductive invariant. This is captured by rule [Tvar], that types
a corecursive call X(z, w) by looking up in 5 for the corresponding binding and renaming the parameters with the

arguments of the call. Inductive and coinductive types are explicitly unfolded with rule [Ty].

Manuscript submitted to ACM
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The Linear Session Abstract Machine 7

fwdxy =fwdyx [fwd] (provisos)

cut {P |x: Al Q} =cut {Q|x:A|P} [

Pllo=P PlQ=Ql[P PIQIR=®IQIR [

cut {P %] (Q || R)} = (cut {P |x| Q}) || R [cM] x € fn(Q)

cut {P [x] (cut {Q Iyl RN} =8 cut {Q Iyl (cut {P |x| RD)} [ccl %,y € f(R)

cut {P |z| (cut! {y.Q |!x| R})} = cut! {y.Q |'x| (cut {P |z| R})} [cc x € fn(Q) and z ¢ fn(P)

cut! {y.Q |'x| (P || R)} = P || (cut! {y.Q |'x| R}) [CM] x ¢ fn(Q) and z ¢ fn(P)

cut! {y.P |'x| (cut! {w.Q |'z| R})} = cut! {w.Q |'z| (cut! {y.P |'x| R})} [

cut! {y.P |!'x| (Q | *|R)} = cut! {y.P |!x| Q} | = | cut! {y.P |'x| R} [

a(x);:Q [+ | R = a(x);(Q|+|R) [
[

a(x);b(y);P =b(y);a(x); P Ci] x £y, bn(a(x)) N fn(b(y)) =0

Fig. 5. Structural congruence P = Q.

2.7 Reduction Semantics

We call action any process that either realizes an introduction rule ([T®], [T°8], [T1], [T L], [T!], [T?]) or is a forwarder.
We then denote by A the set of all actions, by A(x) the set of action with subject x (the subject of an action is the
channel name in which it interacts [54]). An action is deemed positive (resp. negative) if its associated type is positive
(resp. negative) in the sense of focusing [4] and polarisation [49]. The set of positive (resp. negative) actions is denoted
by A* (resp. A~). We sometimes use, e.g., A or A*(x) to denote a process in the set.

The CLL operational semantics is given by a structural congruence relation = that captures static identities on
processes, corresponding to commuting conversions in the logic, and a reduction relation — that captures process

interaction, and corresponds to cut-elimination steps.

Definition 2.4 (P = Q). Structural congruence = is the least congruence on processes closed under a-conversion and

the =-rules in Fig. 5.

The definition of = reflects expected static laws, along the lines of the structural congruences / conversions in
[14, 82]. The binary operators forwarder, cut, and mix are commutative. The set of processes modulo = is a commutative
monoid with operation the parallel composition (— || —) and identity given by inaction 0 ([par]). Any static constructs
commute, as expressed by the laws [CM]-[C!sC!]. The unrestricted cut distributes over all the static constructs by law
[C*], where — | * | — stands for either a mix, linear or unrestricted cut. The laws [C+%] and [C+] denote sound proof
equivalences in linear logic and bring explicit the independence of linear actions (noted a(x)), in different sessions x [58].
These conversions are not required to obtain deadlock freedom. However, they are necessary for full cut elimination
(e.g., see [82]), and expose more redexes, thus more non-determinism in the choice of possible reductions. Perhaps
surprisingly, this extra flexibility is important to allow the deterministic sequential evaluation strategy for CLL programs
adopted by the SAM to be expressed.

Definition 2.5 (Reduction — ). Reduction — is defined by the rules of Figure 6.

For readability, we omit the type declarations in the cuts, as they do not actually play any operational role in reduction.

We denote by = the reflexive-transitive closure of —. Reduction includes the set of principal cut conversions, i.e. the
Manuscript submitted to ACM
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8 Luis Caires and Bernardo Toninho

cut {fwd x y |y| P} — {x/y}P [fwd]
cut {close x |x| wait x; P} — P [11]
cut {send x(y.P); Q [x[ recv x(2); R} — cut {Q [x| (cut {P [y| {y/z}R})} (@]
cut {case x {|#£ € L:Ps} |x| #1 x;R} — cut {Py |x| R} [&®]
cut {!x(y); P |x| ?x; Q} — cut! {y.P |'x| Q} [1?]
cut! {y.P |'x| call x(z); O} — cut {{z/y}P |z| (cut! {y.P |!x| O})} [call]
cut {sendty x(A); P |x| recvty x(X); Q} — cut {P |x| {A/X}Q} [3v]
cut {unfold, x; P |x| rec Y(z,w); Q [x, 4]} — cut {P |x| {x/z}{j/w}{rec Y(z,w); Q/Y}Q} [corec]

Fig. 6. Reduction P — Q.

redexes for each pair of interacting constructs. It is closed by structural congruence ([=]), in rule [cong] we consider
that C is a static context, i.e. a process context in which the single hole is covered only by the static constructs mix
or cut. The forwarding behaviour is implemented by name substitution [fwd] [15]. All the other reductions act on a
principal cut between two dual actions, and eliminate it on behalf of cuts involving their subprocesses.

CLL satisfies the basic safety properties, type preservation and progress. Preservation follows since structural

congruence and reductions are sound linear logic proof conversions (see [14, 16, 68]).

THEOREM 2.6 (TYPE PRESERVATION). Let P + A;T.

(1) IfP=Q, thenQ + A;T.
(2) IfP —> Q, thenQ + A;T.

A process P is live if and only if P = C[Q], for some static context C (the hole lies within the scope of static constructs
mix and cut) and where Q is an action process. The proof of Theorem 2.7 (see [14, 16, 68]) leverages deep properties of

linear logic proofs, allowing deadlock absence to be proved by purely structural means.

THEOREM 2.7 (PROGRESS). Let P + 0; 0 be live. Then P — Q for some Q.

2.8 Examples

After formally presenting the operational semantics of our language, we illustrate the various operators with some
example code written in a programmer friendly, sugared syntax.

To simplify the presentation of examples, we omit explicit unfolding actions, and write inductive and coinductive
type definitions with equations of the form rec A = f(A) and corec B = f(B) instead of A = pX.f(X) and B =
vX.f(X), respectively. Similarly, we write corecursive process definitions as Q(x, ) = f(Q(-)) instead of Q(x,7) =
rec X(z, w); f(X(-)) [x,4], while of course respecting the constraints imposed by typing rules [Tvar] and [Tcorec].

We begin by defining a recursive session type encoding the natural numbers:

recNat = @ {#Z:1,#S: Nat }

Manuscript submitted to ACM
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The Linear Session Abstract Machine 9

We can now define processes implementing some natural numbers incrementally as follows:

zero(n : Nat) = #Z n; close x
one(n : Nat) = #S n; zero(n)
two(n : Nat) = #S n; one(n)

We can now define a recursive process which duplicates a given natural number (on channel n) by emitting the

corresponding behavior on channel r:

dupl(n : Nat, r : Nat) = case { #Z : wait n; #Zr;close r,
#S : #Sr;#Sr;dupl(n,r) }

Process dupl(n, r) consumes a (linear) Nat at n and produces a (linear) Nat at r. It performs case analysis on the label
sent along channel n. If the label corresponds to zero (#Z), then the corresponding label is sent along r. If the label
corresponds to a successor (#S), then two successor labels are sent along r, and then the process recurs on n, thus
doubling the value of n on r. We can define a replicable (non-linear) version of the doubling process via the exponentials
as follows:

ddup(dup :!(Nat —o Nat)) = dup(f);recv f(x);dupl(x, )

The ddup process above provides at dup a replicated “function” process, which may be called on channel dup to yield a
fresh linear session (on fresh channel f) that will input the number x to be doubled using dupl. Notice that the type
I(Nat — Nat) abbreviates !(Nat '8 Nat). A shared usage of such a function process by two parallel clients, one calling

with the number one and the other with the number two, is given by program main below.

main() = cut{
ddup(dup)
|dup : '(Nat — Nat)| rec printnat(n : Nat) =
( case n { #Z : wait n; 0,
call dup(c1);send cq(n.one(n)); printnat(cy) #S : printnat(n) }

I
call dup(cz); send ca(n.two(n)); printnat(cz)
)

}

where printnat(n) simply consumes down the given natural number n.

3 THE DESIGN OF THE SAM

In this section we develop the key insights that guide the construction of our linear session abstract machine (SAM)
and introduce its operational rules in an incremental fashion. We consider here the basic (multiplicative / additive)
fragment of linear logic for the sake of clarity of presentation, postponing the analysis of exponentials, polymorphism
and recursion to Section 6.

One of the main observations that drives the design of the SAM is the nature of proof dynamics in (classical) linear
logic, and thus of process execution dynamics in the CLL system of Section 2. The proof dynamics of linear logic are
derived from the computational content of the cut elimination proof, which defines a proof simplification strategy that

removes (all) instances of the cut rule from a proof. However, the strategy induced by cut elimination is non-deterministic
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S x= (P,H) Configuration
R t= X,y SRef
H = (SRef, SRef) — SessionRec Heap
R == x(qP)y Session Record
q w= nil | V| V@q Queue
Val == V Close token

| #l Choice label

| clos(x, P) Process Closure

Fig. 7. The Core SAM Components

insofar as multiple simplification steps may apply to a given proof. Transposing this observation to CLL and other
related systems, we observe that their operational semantics does not prescribe a rigid evaluation order for processes.
For instance, in the process cut {P |x| Q}, reduction is allowed in both P and Q. This is of course in line with reduction
in process calculi (e.g., [54]). However, in logical-based systems this amounts to don’t care non-determinism since,
regardless of the evaluation order, confluence ensures that the same outcomes are produced (in opposition to don’t
know non-determinism which breaks confluence and is thus disallowed in purely logical systems). The design of the
SAM arises from attempting to fix a purely sequential reduction strategy for CLL processes, such that only one process
is allowed to execute at any given point in time, in the style of coroutines. To construct such a strategy, we forego the
use of purely synchronous communication channels, which require a handshake between two concurrently executing
processes, and so consider session channels as a kind of buffered communication medium (this idea has been explored
in the context of linear logic interpretations of sessions in [28]), or queue, where one process can asynchronously
write messages so that another may, subsequently, read. To ensure the correct directionality of communication, the
queue has a write endpoint (on which a process may only write) and a read endpoint (along which only reads may be
performed), such that at any given point in time a process can only hold one of two endpoints of a queue. Moreover,
our design takes inspiration from insights related to polarisation and focusing in linear logic, grouping communication
in sequences of positive (i.e. write) actions on the same session.

Allowing session channels to buffer message sequences, we may then model process execution by alternating between
writer processes (that inject messages into the respective queues) and corresponding reader processes. Thus, the SAM
must maintain a heap that tracks the queue contents of each session (and its endpoints), as well as the suspended
processes. The construction of the core of the SAM is given in Figure 13. An execution state is simply a pair consisting
of the running process P and the heap H.

A heap is a mapping between session identifiers and session records of the form x(q, Q)y, denoting a session with
write endpoint x and read endpoint y, with queue contents g and a suspended process Q, holding one of the two
endpoints. If Q holds the read endpoint then it is suspended waiting for the process holding the write endpoint to fill
the queue with data for it to read. If Q holds the write endpoint, then Q has been suspended after filling the queue and
is now waiting for the reader process on y to empty the queue.

We adopt the convention of placing the write endpoint on the left and the read endpoint on the right. In general,
session records in the SAM support a form of coroutines through their contained processes, which are called on and
returned from multiple times over the course of the execution of the machine. A queue can either be empty (nil) or
holding a sequence of values. A value is either a close session token (v), identifying the last output on a session; a
Manuscript submitted to ACM
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The Linear Session Abstract Machine 11

choice label #] or a process closure clos(x, P), used to model session send and receive. While omitted for the sake of
clarity at this stage, in Section 5 we expand the grammar of queue contents to include types ty(T) (exchanged by

polymorphic processes) and recursion markers step, to account for recursion.

Cut. We begin by considering how to execute a cut of the form cut {P |x : A| Q}, which consists of the composition
of processes P and Q, exclusively sharing the new session channel x. Given the choice of either scheduling P or Q, we
rely on the polarity (in the sense of polarized logic [33]) of type A to drive the execution of the SAM. A positive type
corresponds to a type denoting an output (or write) action, whereas a negative type denotes an input (or read) action.
We are thus forced to schedule the process whose next action on x is a write rather than a read: the only way for a
process to exercise its read capability on such a new session successfully is to wait for the writer to have exercised (at
least some of) its write capability.

Recalling that P uses x according to type A and Q according to A, if A is positive, we must schedule P. If A is negative,
we must schedule Q. Thus, the SAM rule for cut is:

(cut {P |x : A| Q},H) = (P, H[x : A(nil, {y/x}Q)y : A])? [SCut]

The rule allocates a new session record with an empty queue, relying on the operation (P(x), H[x:A(nil, Q(y))y:A])?

which used to prepare the newly created session. The operation, defined as
(P, H[x:A(nil, Q)y:B])P £ if (A+) then (P, H[x:A(nil, Q)y:B]) else (Q, H[y:B(nil, P)x:A])

essentially schedules process P(x) for execution if the type A of x is positive, which then becomes the write endpoint,
and suspends Q(y) at the negative endpoint y. If A is negative, the session record is set conversely, with Q(y) scheduled
and P(x) suspended. Note that in general, the holder of the write and read endpoint can change throughout execution
of the machine. Moreover, both P and Q can interact along many different sessions as both readers and writers before
exercising any action on x (resp. y). However, they alone hold the freshly created endpoints x and y and so the next

value sent along the session must come from P and Q is its intended receiver.

Channel Output. To execute an output of the form send x(z.R); Q in the SAM we lookup the session record for x and
add to the queue a process closure containing R (which interacts along z). We must then choose the next process to
execute. Again, this choice relies on the polarity of the (continuation) session type. If the type is positive, execution will
continue with the continuation process Q. Otherwise, execution will switch control to the suspend process P, holding

the read endpoint of the session:
(send x(z.R); Q,H[x : A® C{(q,P)y : B]) = (Q,H[x : C{q@clos(z,R), P)y : B])*" [S®]
The control choice is implemented using the operation (P, H[x:A(g, Q)y:B])™" (write-to-read adjust), given by:
(P, H[x:A{q, Q)y:B])"™" 2 if (A+) then (P, H[x:A(q, Q)y : B]) else (Q, H[x:A(g, P)y:B])

The write-to-read adjust operation prepares the state of the SAM after a positive operation in an ongoing session,
according to the description above, effectively allowing all positive operations in sequence in a given session to take

place before a context switch to the reader process happens (once the type polarity switches from positive to negative).
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12 Luis Caires and Bernardo Toninho

Session Closure. The execution of close follows a similar spirit, but no continuation process exists in this case and the

SAM resumes the process P holding the read endpoint y of the queue:
(close x,H[x : 1{q, P)y : B]) = (P,H[x : 0{q@V/,0)y : B]) [S1]

The process P will eventually read, via wait, the session termination mark from the queue, triggering the deallocation

of the session record from the heap:
(wait y; P,H[x : 0(v,0)y : 1]) = (P,H) [S1]

Note the requirement that v' be the final element of the queue.

Channel Input. The rule for recv is as follows:

(recv y(w L A); O, H[x:C{clos(z : A,R)@q, P)y:g 2 D]) = (Q,H[(x:C{q, P)y:D)™] [w:A(nil, R)z:A])? [S%]

A

where (x:A{q, Q)y:B)"™ £ if (¢ = nil) then y:B{q, Q)x:A else x:A(q, Q)y:B. The execution of an input action requires
the corresponding queue to contain a process closure, denoting the process that interacts along the received channel w.
In order to ensure that no inputs attempt to read from an empty queue, we rely once again on the init-adjust operation
(...)P, which schedules R or Q depending on the polarity of the type of w. If A is positive, Q will eventually write on w,
thus w is the positive or write endpoint and Q is scheduled for execution.

In either case, the session record for the original session is updated by removing the received message from the
queue. Crucially, since processes are well-typed, if the resulting queue is empty then it must be the case that Q has no
more reads to perform on the session, and so we swap the read and write endpoints of the session. This is achieved
by the read-to-write adjust operation (x:A(g, Q)y:B)"". This swap serves two purposes: first, it enables Q to perform
writes if needed; secondly, and more subtly, it allows for the process P, that holds the other endpoint of the queue to be
resumed to perform its actions accordingly.

To see how this is the case, consider that such a process will be suspended just before attempting to perform a
negative action on the write endpoint of the queue. After the swap, the endpoint of the suspended process now matches
its intended action. Since Q now holds the write endpoint, it will perform some number of positive actions on the
session which end either in a close, which context switches to P, or in a negative polarity action which will context

switch to P through the write-to-read adjust operation.

Choice and Selection. The treatment of the additive constructs in the SAM is straightforward:
(#1x;:Q, H[x : @1 Ar(q P)y : B]) = (Q. H[x : Ay(q@#l,. P)y : B)™" (Se]

(case y {|#f € L:Q¢}, H[x : A(#l@q, P)y : &rerBe]) = (Qu, H[(x : Alq, P)y : By)™])  [S&]

Sending a label #l, a positive action, simply adds the #l to the corresponding queue and proceeds with the execution,
performing the write-to-read adjustment analogously to the [S® rule. Executing a case reads a label from the queue
and continues execution of the appropriate branch. Since removing the label may empty the queue, we perform the

read-to-write adjustment as in rule [S’®].

Forwarding. Finally, let us consider the execution of a forwarder:

(fwd x y, H[z : A{q1,Q)x : B][y : B{gz, P)w : C]) = (P,H[z : Alg2@q1, Q)w : C]) [Sfwd]
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The Linear Session Abstract Machine 13

A forwarder denotes the merging of two different sessions x and y, with x : B and y : B. Without loss of generality
(because of fwd x y = fwd y x), we assume the forwarder fwd x y holds the read and write endpoints at respectively x
and y, with B negative and B positive. Since the forwarder holds the read and write endpoints x and y, respectively, Q
has written (through z) the contents of g1, whereas the previous steps of the currently running process have written gz.
Thus, P is waiting to read q2@q, justifying the rule above.

The reader may then wonder about other possible configurations of the SAM heap and how they interact with the
forwarder. Specifically, what happens if y is of a positive type but a read endpoint of a queue, or, dually, if x is of a
negative type but a write endpoint. These cases are ruled out by the SAM since the heap satisfies the invariant that any
session record of the form x:A{q, P)y:A € H is such that A must be of negative polarity or P is the inert process (which

cannot be forwarded).

3.1 On the Write-Bias of the SAM

Consider the following CLL process:
P2cut{Pla:1®1|{a/b}O1}

P; £ send a(y.Ps); P3 Q1 2 recv b(x); Q2
Py = close y Q2 = wait x; 03
P3 = close a Q3 = wait b;0

The execution of P in the SAM begins in the state:
(P, 0)

Which executes the cut through rule [SCut]. Since the type of a is positive, we execute P;, and allocate the session
record, suspending Q1:

(P,0) = (P, a(nil,Q1)b)
Since P; is a write action on a write endpoint, we proceed via the [S®] rule, resulting in the SAM configuration,
(P1, a¢nil, Q1)b) = (Ps, a{clos(y, P2), Q1)b)

executing P3 and adding a closure containing P; to the session queue with write endpoint a. To execute P3, a close

action, we add the v to the queue and switch to the process Q; (rule [S1]), now ready to receive the sent value:

(P3, a{clos(y, P2), Q1)b) = (Q1, a{clos(y, P2) @V, 0)b)

The applicable rule is now [S’®], and so execution will context switch to Py after creating the session record for the new

session with endpoints y and x:
(Q1, a{clos(y, P2)@v', 0)b) = (P2, y{nil, Q2)x, a(v/, 0)b)
Process P, will execute as follows (rules [S1],[S.L] and [SL]):
(P2, y¢nil, Q2)x, a{V/, 0)b) = (Q2, y¢{v, 0)x, a{v/, 0)b) & (Qs, a({v/, 0)b) = (0,0)

consuming the appropriate v and deallocating the session records. Note how after executing the send action of P; we
eagerly execute the positive action in P3 rather than context switching to Q1. While in this particular process it would
have been safe to execute the negative action in Q1, switch to P, and then back to Q2, we would now need to somehow
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14 Luis Caires and Bernardo Toninho

context switch to P3 before continuing with the execution of Qs3, or execution would be stuck. However, the relationship
between P3 and Q5 is unclear at best. Moreover, if the continuation of Q1 were of the form wait b; wait x; 0, the context

switch after the execution of P, would have to execute P3, or the machine would also be in a stuck state.

3.2 lllustrating Forwarding

To better illustrate the execution of a fwd x y action, consider the following CLL process (to simplify the execution
trace we assume the existence of output and input of integers typed as int ® A and int ’® A, respectively, eliding the

need for process closures in this example):

P2 cut {Py |b:int9int’e 1] {b/c}cut {Q) |a: int®int’® 1| {a/d}R;}}
Py £ recv b(x); Py Q1 £ senda(1); Q2 Ry = recvd(y); Ry
Py £ recv b(z); P3 Q2 % send ¢(3); 03 Ry = send d(2); R
P3 £ close b Qs =fwdac R3 £ wait d;0

If we consider the execution of P (rules [SCut], [SCut], [S®]):
(P,0) = (cut {Q1 |a| {a/d}R1}, c(nil, P1)b) = (Q1, a(nil, Ry)d, c(nil, P1)b) = (R1, a1, Q2)d, c{nil, P1)b)

The first three steps of the execution of P allocate the two session records and perform the write by Q. After firing rule

[S®], since the continuation type is negative, a context switch to R; and rule [S’®] applies:
(R1, a1, Q2)d, c(nil, P1)b) = (R, d{nil, Q2)a, c{nil, P1)b)

note how after R; performs its read, the read-to-write adjust operation swaps the endpoints of the session record,

enabling the send by R, to be performed via rule [S®]:
(Rz, d(nil, Q2)a, c(nil, P1)b) = (Q2,d(2, R3)a, c{(nil, P1)b)
Rule [S®] applies again, performing the write on c:
(Q2.d(2,R3)a, c(nil, P1)b) = (Q3,d(2,R3)a, c(3, P1)b)

where Qs is a forwarder for endpoints a and c. Note that g is a read endpoint and ¢ a write endpoint, as needed. Thus

we apply rule [Sfwd], merging the two session records:
(Q3,d(2,R3)a, c(3, P1)b) = (P1,d(3@2, R3)b)
The execution can then proceed (rules [S%2], [S’®], [S1], [SL]):
(P1,d(3@2,R3)b) = (P2,b(2,R3)d) = (P3,b({nil,R3)d) = (R3,b{v,R3)d) = (0,0)

Note the correct ordering in which the sent values are dequeued, where 3 is read before 2, as intended.

At this point, the reader may wonder about the correctness of the SAM’s evaluation strategy as just discussed. Our
evaluation strategy is devised to be a deterministic, sequential strategy, where exactly one process is executing at any
given point in time, supported by a queue-based buffer structure for channels and a heap for session records. Moreover,
taking inspiration from focusing and polarized logic, we adopt a write-biased stance and prioritize (bundles of) write
actions on the same session over reads, where suspended processes hold the read endpoint of queues while waiting for
Manuscript submitted to ACM
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The Linear Session Abstract Machine 15

the writer process to fill the queue, and hold write endpoints of queues after filling them, waiting for the reader process
to empty the queue.

While this latter point seems like a reasonable way to ensure that inputs never get stuck, it is not immediately
obvious that the strategy is sound wrt the more standard (asynchronous) semantics of CLL and related languages, given
that processes are free to act on multiple sessions. Thus, the write-bias of the cut rule (and the overall SAM) does not
necessarily mean that the process that is chosen to execute will immediately perform a write action on the freshly
cut session x. In general, such a process may perform multiple write or read actions on many other sessions before
performing the write on x, meaning that multiple context switches may occur. Given this, it is not obvious that this
strategy is adequate insofar as preserving the correctness properties of CLL in terms of soundness, progress and type

preservation. The remainder of this paper is devoted to establishing this correspondence in a precise technical sense.

4 CLLB: A BUFFERED FORMULATION OF CLL

To prove that the SAM adequately implements the operational semantics defined by reduction in CLL from Section 2,
we need to show there are two way simulations between the two systems. However, there is a substantial gap between
the language CLL, presented in an abstract algebraic style with its operational semantics defined by non-deterministic
equational and rewriting systems, and an abstract machine such as the SAM, that evolves deterministically and represents
the computation state by manipulating several “low-level” structures (heap, queues, etc). Even if the core SAM structure
and transition rules are fairly simple, proving its correctness in relation to CLL is technically challenging, as is often
the case with corresponding results relating higher-level languages and automata-style machines.

Therefore, to smoothly approach our results, we rely on a progressive build up. To construct the operational
correspondence between the SAM execution and reduction in CLL, we first introduce an intermediate logical language
CLLB that bridges between CLL and the SAM, conservatively extending CLL with a buffered cut construct, and

approximates the effect of session queues in the SAM in a precise sense. The CLLB buffered cut has the form
cut {Pla:A[q] b:B|Q}

and mediates all interactions between processes P and Q via a message queue g with two polarised endpoints a and
b, where a of type A is held by process P and b of type B is held by process Q. The queue g stores values expressing
messages communicated between channel endpoints. A polarised endpoint has the form x or x. The endpoint marked
X is the one allowing writes, the unmarked x is the one allowing reads, with exactly one of the two endpoints being
marked at each moment. In a buffered cut the endpoint types A, B are related but do not need to be exact duals. In
particular, the (session) type of the writer endpoint may be advanced “in time” with relation to the (session) type of the
reader endpoint. This situation reflects that messages already sent by the writer process have been enqueued but have
not yet been consumed by the reader. If the queue is empty, we must have A = B. Thus a buffered cut with an empty
queue corresponds exactly to a basic cut of CLL. Structural congruence for B (noted =B) is obtained by extending =

with commutative conversions for the buffered cut, listed in Fig. 8.

Definition 4.1 (Queue Values). Queue values and queues are defined by

V = Vv (Close token) | step (Recursion Unfold) q == nil|V]|q@q (Queue)
| #l (Selection Label) | clos!(x,P) (Exponential Closure)
| clos(x,P) (Linear Closure) | ty(T) (Type)
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cut {Q la: A[q]b: B| P} =B cut {Q |b: Blgla: A| P} [
cut {P [x[qly| (Q || B} =B (cut {P |x[qlyl Q}) | R (BM] y € fn(Q)

cut {P |x[qlz| (cut {Q |y[plw| R}} =B cut {Q ly[plwl (cut {P |x[glz| R})} (BB] w,z € fn(R)
[

cut! {y.P |!'x| (cut {Q |z[q]w| R})} =B cut! {y.P |'x| cut {(y.P |'x| Q) |z[q]w| R})} [BdistC!]

Fig. 8. Additional Structural Congruence Rules for CLLB.

PrBA x: AT QrBAY:AT A+ cut {close x [¥:1 [q] y: B| Q} +B A;T

[TcutE] [Tcut1]
cut {P [x: A [nil] y: A Q} ¥B A’ A;T cut {0[x:0[q@v]y: Bl Q} B AT
cut {send x(y.R); P ¥ : T®A [q] y: B| Q} +B A;T [Teutg] Ut 1P X : @crdr [q]y: Bl O} FAT [Teuta]
cut {P |¥: A [g@clos(y,R)] y : B| Q} +B A;T cut {P |X: Ay [q@#] y: B Q} +B AT
cut {sendty x(T); P [x : 3X.A [q] y : B| Q} +B AT [Teut3] cut {Ix(2); P |[x 1A [q] y: B| Q} B A;T [Teut!]
cut {P [ : {T/X}A [q@ty(T)] y : B Q} B AT cut {0 |x: 0 [g@clos!(z,P)] y : B| Q} +B A;T
cut {unfold, x; P |x : uX.A [q] y : B| Q} FB AT [Teuty]

cut {P |x : {uX.A/X}A [q@step] y: B| Q} B AT

Fig. 9. Additional typing rules for CLLB.

The value v denotes session closure request, and #l a selection label issued from a selection process to an offer
process. The linear closure clos(x, P) stores a suspended linear process P that interacts on fresh name x, such value is
issued by a sender process to a receiver. The exponential closure clos!(x, P) is like process closure but for a replicable
process. We also have ty(T), representing a type passed in communications via type send / receive operations, and the
“step token” step representing a recursion unfold request. We use @ to denote (associative) concatenation operation of
queues, with unit nil. Enqueue and dequeue operations occur respectively on the queue rhs and lhs.

The type system CLLB is obtained from CLL by replacing the [Tcut] rule with the five typing [Tcut-*] rules in Fig. 9.
Apart from [TcutE], each [Tcut-*] rule applies to a distinguished positive type. We assume that for each of these rules
the symmetrical one is defined.

We distinguish the type judgements as P + A; T (or P +cp L A;T) for CLL and P +B A;T for CLLB. The [TCutE] rule
sets the endpoint’s mode based on the cut type polarity, applicable whenever the queue is empty. The remaining rules
relate queue contents with their corresponding (positive action) processes. Rule [Tcut®] can be read bottom-up as
stating that typing processes mediated by a queue containing a process closure clos(y, R) amounts to typing the process
that will emit the session y (bound to R), interacting with the queue with the closure removed. Rules [Tcut®] and
[Tcut!] apply a similar principle to the other possible queue contents. In [Tcut-1] and [Tcut!] the write endpoint is
assigned the empty context 0, to mark that the sending process has terminated (0), either by a close x action or by
turning into a replicable value !x(z); P.

Reduction for CLLB (noted —B) is obtained by replacing the CLL reduction — rules [fwd], [11], [®°9], [®&], [!?],
[3V], [uv] and [corec], by the rules in Fig. 10. Essentially each principal cut reduction rule of CLL is replaced by a pair
Manuscript submitted to ACM
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cut {Q |z [q1] x| fwd x y [§ [q2] w| P} =B cut {Q |z [g2@q1] w| P} [
cut {close x [ [q] y| Q} =P cut {0 [x [g@v] y| Q} [
cut {0 [x [V] y| wait y;P} =B P [
cut {send x(z.P); Q |% [q] y| R} B cut {Q | [g@clos(z, P)] y| R} [
cut {Q [¥ [clos(z, P)@q] y| recv y(w); R} —B cut {Q [¥ [q] y| cut {P |z [nil] w| R}P}" [
cut {#l x; P |% [q] y| R} =B cut {Q [x [q@#]| y| R} [
cut {Q [ [l@q] y| case y {[#¢ € L:Pe} } =B cut {Q |x [q] y| Pu}" [&]
cut {!x(2); P [x [q] y| Q} = cut {0 [x [g@clos!(z P)] y| Q} [
cut {0 [¥ [clos!(z,P)] y| 7y; Q} —B cut! {z.P |ly| O} [
cut! {y.P |!x| call x(z); O} — cut! {y.P |!x| cut {P |y [nil] z| Q}P} [
cut {sendty x(T); P [x [q] y| R} =B cut {Q [X [q@ty(T)] y| R} [
cut {Q [¥ [ty(T)@q] y| recvty y(X); R} =B cut {Q [x [q] y| {T/X}R}" [
cut {unfold, x;P [¥ [q] y| R} =B cut {P [X [g@step] y| R} [
cut {Q [¥ [step@q] yl rec Y(u, w); Q [y, 2]} =P cut {Q |¥ [q] yl {y/ulZ/w}H{(rec Y(y,w); Q)/Y}Q} [

Fig. 10. CLLB reduction P —8 Q.

of “positive” (—p) / “negative” (—,) reduction rules that allow processes to interact asynchronously via the queue,
that is, positive process actions (corresponding to positive types) are non-blocking. For example, the rule [®] for send
appends a session closure to the tail (rhs) of the queue and the rule for receive pops a session closure from the head
(Ihs) of the queue (lhs). Notice that positive rules are enabled only if the relevant endpoint is in write mode (x), and
negative rules are enabled only if the relevant endpoint is in read mode (y). In the reduction rule [*®] the polarities of
the endpoints in the cuts occurring in the reductum depend on the types of the composed processes. To uniformly

express the appropriate marking of endpoint polarities after reads we define the following convenient abbreviations:

Definition 4.2 (Adjusting polarities).

cut {Q [x : A[nilly : B| P} £ if+A then cut {Q |x : A[nil]ly : B| P} else cut {Q |x : A[nil]y : B| P}
cut {Q |x: Alqly : B| P}" £ if (q = nil) then cut {Q |x : A[nil]y : B| P}P else cut {Q |x : A[qly : B| P}

I>

After a (negative) read operation, if the queue becomes empty, the type of the read endpoint may change polarity
from negative to positive, and thus endpoints role must be swapped, for the cut to be typed (by [CutE]).

Definition 4.3 (Stable Process). We call a CLLB process stable if all its cuts have empty queues. Any CLL process S
can be written as stable CLLB process ST, by replacing all its cuts by (empty) buffered cuts as follows:

(cut {R|x: Al QN £ cut (R |x: A [nil] y : Al ({y/x}Q)T}P

Clearly P + A;T implies PT B A;T. Based on this correspondence, we may overload the notation cut {R |x : A| Q} to

denote both a CLL cut or the corresponding empty-queued CLLB cut, if that makes sense in the context of use.

If Figure 11, we exemplify reduction of a CLLB process where processes S1 and R; communicate on a single session.
We could understand the system as the CLLB encoding cut {S; [x : 1®1® (L@ L)[nilly : L2 L2 (1®1)| R1}
Manuscript submitted to ACM
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Sy = send x(cy.close ¢1);S2
Sy = send x(cz.close ¢2); S3

S3 =recv x(2); S
S4 = wait z; wait x; 0

Luis Caires and Bernardo Toninho

Ry =recv y(v1); Ry

Ry =recv y(v2); R3

R3 = send y(cs3.close ¢3); Ry
R4 = wait v1; wait v2; close y

cut {$; ¥:1®@10 (L% L)[nilly: Lo L9 (1©1)| R} —B [®]
cut {82 [¥:1® (L9 L)[clos(ci.close c1)]y: L9 L9 (1®1)| Ry} —B [®]
cut {S3 [x: L@ L[clos(cy.close c1) :: clos(ca.close ¢g)]y: L9 L@ (1®1)| Ry} —B 2]

cut {83 [¥: L9 L[clos(cz.close ¢2)]y : L9 (1® 1) cut {close ¢ [1 : 1[nil]oy : 1| Ry}} =B

cut {close ¢1 [e1 : 1[nilJoy : L] cut {S3 [x : L9 L[clos(cz.close ¢2)]y: L9 (1®1)| Ry}} —B

cut {0 [c1 : 0[V']og : L] cut {S3 ¥ : L@ L[clos(ca.close c2)]y: L@ (1®1)| Ra}} —B

cut {close ¢z [c2 : 1[nilJog : L| cut {0 [c1: O[v]og : L] cut {R3 |y : 1@ 1[nil]x: L’@ L|S3}}} —B
cut {0 [c2 : 0[V]oz : L] cut {0 [c1 : 0[V]og : L] cut {R3 [y : 1@ 1[nil]x: L’@ L|S3}}} —B

cut {0 ¢z : 0[v]oz : L| cut {061 : O[vJoy : L] cut {Ry |5 : 1[clos(cs.close e3)]x : L7 L| S3}}} =B
cut {0 ¢z : 0[v]oz : L| cut {cut {0 [¢1 : O] ]oy : L| Ry} |7 : 1[clos(cs.close ¢3)]x : L9 L] S3}} —B
cut {0 ¢z : 0[vJoz : L| cut {Rs [7: 1[clos(cs.close ¢3)]x : L9 1| S3}} =B

cut {cut {0 ¢ : 0[]z : L| Rs} |7 : 1[clos(cs.close ¢3)]x : L9 L| S3} —B

cut {Rs |7 : 1[clos(cs.close ¢3)]x : L9 1| S3} —B

cut {07 : O[clos(cs.close c3) :: v]x: L9 1| S3} —B

cut {07 : 0[v]x : L| cut {close cs |3 : 1[nil]z : 1| S4}} —B

cut {0[7:0[v]x: L] cut {0[c3:0[V]z: L] S4}} —B

cut {0 [7: 0[v]x : L] wait x;0} =B 0

cut {$; [¥:1®1@ (L9 L)[nilly: L2 19 (1®1)| Ry} =B

cut {8y [¥:1® (L9 L)[clos(ci.close ¢1)]y: L9 L9 (1®1)| R} —B

cut {S2 [x:1® (L@ L)[nilly: L2 (1®1)| cut {close ¢q [c1 : 1[nil]oy : L| R2}} —B

cut {83 [x: L9 L[clos(cz.close c2)]y : L9 (1®1)] cut {close ¢ [¢1 : 1[nilloy : L| Rp}} —B -+

Fig. 11. CLLB reduction (Examples)

of the CLL process P = cut {S1 [x: 1®1® (L’ L)| Ri{x/y}}. We illustrate the flexibility introduced by the buffer
mediated session interaction with an alternative ordering (bottom) of the first four reduction steps on the complete
sequence (top). On top, two writes to the queue are anticipated, while below a the first send is immediately received by
R; before the second send. In Section 4.2 below, we analyse the correspondence between CLL and CLLB reduction,
where commutations such as the one just exemplified play an important role to show operational equivalences between

the “synchronous” interactions of CLL and the apparently “asynchronous” buffer-mediated interactions of CLLB.

4.1 Preservation and Progress for CLLB

In this section, we prove the basic safety properties of CLLB: Preservation (Theorem 4.8) and Progress (Theorem 4.10).
To reason about type derivations involving buffered cuts, we first formulate two convenient admissible inversion
principles (Lemma 4.6 and Lemma 4.7). These principles, by monolithically aggregating applications of [TCut-+] rules of
CLLB, allow us to talk in a uniform way about typing of values in queues and typing of processes connected by queues.
To that end, we introduce an alternative typing systems for queues. Typing of queues g is specified by judgments the
Manuscript submitted to ACM
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formT;A + q : R> W, where R and W are types. Intuitively, the judgment asserts that the queue g contains values typed

inT; A, sequenced in a consistent way for a process writing at type W and a receiver reading at type R.

Definition 4.4 (Typing of Queues). Queues can be typed by the following admissible rules.
PrBALZz:T;T T;MA3rq:EvF  T;AFq: {uX.E/X}E»F

T;knil : ExE kv 150
T;A1,A2 +clos(z,P)@q: TQ E>F T; A+ step@q : pX.E» F
T;Avq:EysF PrBz. AT T;Avq:{T/X}E>F
[;A+#l@q : ®pe Ep> F T;k clos!(z, P) !1A> 0 T;A+ty(T)@q : 3X.E>F

Concatenation and splitting of queues preserves typing in the following sense.

LEmMMA 4.5. Queue typings satisfy the following properties:

(1) (Interpolation) LetT; A + q@q’ : A C.

Then there are B, A1, Ap such that A = Ay, Mg, T;A1 Fq: A>BandT;A2 +q' : B> C.
(2) (Transitivity) LetT; A1+ q: A>BandT; Ay + ¢’ : B> C. ThenT; A1, A2 + q@q’ : A»C.
(3) (Transitivity) If B is negative and and q : B> C with C not positive then q # nil.

Proor. By induction on queue typing derivations. O

LEMMA 4.6 (NON-FULL). For P # 0 the following rule is (1) admissible and (2) invertible in CLLB:
PB Ap,x:A;T Q +B AQ, y:B;T F;Aq Fq: B»A B negative
cut {P [x:A [q] y:B| Q} +B Ap, Ag,Ag;T

For inversion (2), the derivations for P and Q are sub-derivations of the conclusion.
Proor. See Appendix 10.1. By induction on the CLLB derivation of the conclusion. O

Notice that a CLL type, regarded as a session type, may terminate in either 1, L or in a exponential !A/?A. We also
have the following admissible inversion principle, which applies to full buffered cuts, that is, where the process P

holding the writer endpoint has terminated execution, and the last value pushed into the queue is v' or clos!(z, R).

LEmMA 4.7 (FuLy). The following rule is (1) admissible and (2) invertible in CLLB:
+B Ao, y:B;T T:;Ay rq:Be0 B negative

QY qr4q 8

cut {0 |x:0 [q] y:B| Q} +B Ag,Ag;T

For (2), the derivation for Q is a sub-derivation of the conclusion. We also have ¢ = ¢’ @V or q = ¢’ @clos!(z, R) for some q’.

PRrRoOF. See Appendix 10.1. By induction on the derivation of the conclusion. O

THEOREM 4.8 (PRESERVATION). Let P +B A:T. We have
(1) Ifp =B Q, then 0 +B A;T.
(2) IfP =B Q, then Q B A;T.

PrOOF. See Appendix 10.1. We verify that every conversion rule for =B and —B is well-typing preserving. O
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_ A) = P= x Plx
gl S(ﬂ)lxx A ilel =] (pué) I i
Plx x#y Olx x#y

[cut] [cut!]
(P lylqlx| Q) Ix (z.P 'yl Q) |x

Fig. 12. Observability Predicate P | .

To prove progress, we follow the technique of inductive observations introduced in [14], also adopted in [16, 68], that
extends smoothly to the current setting of CLLB. A process P is live if and only if P = C[Q], for some action process Q
and some static process context C (a static process context is a process context where the hole lies only within the
scope of static constructs mix or cuts, not behind an action prefix). We first show that any live process either reduces
or offers an interaction. The observability predicate P |, defined in Fig. 12 (cf. [70]), characterises interactions of a

process P with the environment on a free name x (notice that P | implies x € fn(P)).
LEMMA 4.9 (LIVENEss). Let P +B A;T. If P is live then either P |5 or P —B,
PRrooF. See Appendix 10.1. By induction on the derivation for P + A; T, and case analysis on the last typing rule. O
THEOREM 4.10 (PROGRESS). Let P + 0; 0 be a live process. Then, P —B,

Proor. Follows from Lemma 4.9, since A,T = () implies P has no free names. ]

4.2 Correspondence between CLL and CLLB

In this section, we analyse the correspondence between CLL and CLLB, proving that the two languages simulate each

other in a very tight sense. In one direction, the property directly follows from the form of CLLB reduction rules.
LEMMA 4.11 (SIMULATION OF CLL BY CLLB). Let P + 0;0. IfP — Q then PT =B Of.

Proor. See Appendix 10.2. Each CLL reduction is simulated by two positive-negative CLLB reductions (e.g., CLLB
[®9] by CLL [®] followed by ['®]), and [fwd] by [fwdp]. O

On the opposite direction, the proof of the simulation is substantially more involved, since CLLB allows some positive
actions to be buffered ahead of reception, while in CLL a single positive action synchronises with the corresponding
dual in one step, or a forward reduction takes place. We introduce the following notations, which will allow us to

express our operational correspondence results.

Definition 4.12 (Notation). We annotate CLLB reductions as follows:

(1) Write P—B? Q for P—BQ if this reduction is positive (uses [1], [®], [®], ['], [3], or [x]).

(2) Write P—B" O for P—BQ if this reduction is negative or [call] (uses [L], ['9], [&], [?], [call], [¥], [v] or [vu]).
(3) Write P—B2 Q for P—BQ if this reduction is by [fwdp].

(4) Write pSBa O for P—Ba Q if this [fwdp] reduction acts on empty cuts.

(5) Write P—B2P O for P—B( if this reduction is positive or a forwarder.

(6) Write P —B" O for a positive action on a buffered cut with empty queue immediately followed by a matching

negative action on the very same cut (e.g., simulating an CLL reduction, cf. proof of Lemma 4.11).
Manuscript submitted to ACM
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Due to the progress property for CLLB (Theorem 4.10) and because queues are bounded by the size of positive/negative
sections in types or recursion depth, after a sequence of positive or forwarder reductions a negative reduction consuming
a queue value must occur. Theorem 4.15(2) states that every reduction sequence in CLLB, necessarily built of segments
of the form =82P —B" s simulated by a reduction sequence in CLL up to some anticipated forwarding and buffering
of positive actions. Our results imply that every reduction path in CLLB maps to a reduction path in CLL in which
every negative reduction step in the former is mapped, in order, to a cut reduction step in the latter.

We now state and prove the mentioned results. They rely on several technical observations about CLLB reduction,

which we collect in the following Lemmas. The first highlights some useful commutation properties.

LEmMMA 4.13 (CoMMUTATIONS). The following commutation properties of reductions hold.
(1) Let Py—BP S—B" py. Then either (a) Py —B" Py, or (b) Py—B" 5’ —BP Py for some S’.
(2) LetPy—B% §—B" py Then Py —B" ' 82 p, for some §.
(3) Let Py—BaP S—B" py Then either (a) Py —B" Py, or (b) Py—B" 5’ —B2P P, for some 5.
(4) Let P,—Bap N=Bag _Br P,. Then either (a) PliB“ N or (b) there is S” such that P; —B" §’=Bap p,.

PRrRoOF. See Appendix 10.2. O

The postponing Lemma below makes precise the fact that all positive reductions and axioms may be postponed,
except the ones matched by the next related negative reduction. In particular, this allows (2) a matching positive /
negative pair or reductions to be anticipated and collapsed to an intial —Br reduction, and (1) the next negative

reduction unmatched by an earlier positive reduction to be promoted to first reduction step.

LEMMA 4.14 (PosTPONING). Let P B 0;0. IfP=82P —B" O then either

(1) P—B" R and R=82P Q for some R, or;
2) p=Ba _Br g and R=Bap Q for some R.

PRrooF. See Appendix 10.2. The proof relies on the commutation properties of Lemma 4.13. O

THEOREM 4.15 (OPERATIONAL CORRESPONDENCE CLL-CLLB). Let P k¢ 0;0.
(1) IfP = R then Pt =B R,
(2) IfPT =B Q then there is R such that P = R and RT=82p Q.

ProoF. See Appendix 10.2. (1) Iterating Lemma 4.11. (2) Using Lemma 4.14. O

The results in this Section assert that CLL and CLLB essentially implement the same operational semantics, even
given the “asynchronous flavour” of CLLB due to buffering. They will be leveraged in the next sections, to prove
adequacy of the SAM execution, which relies on lower level data structure, w.r.t. CLL, whose reduction relation is

formulated using algebraic rewriting of proofs.

5 THE LINEAR SAM AND ITS CORRECTNESS

In this section, we formally present the Linear SAM and prove its adequacy for executing CLL programs. More precisely
we show that every execution trace of the SAM represents a correct process reduction sequence CLLB (and therefore of
CLL, in light of Theorem 4.15). We first consider here the language without exponentials and mix, adopting a progressive
development and presentation of our results. The basic multiplicative additive fragment of linear logic with recursion

Manuscript submitted to ACM
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1093

S x= (P,H) Configuration
1094
1095 R t= X,y SRef
1096 H = (SRef, SRef) — SessionRec Heap
12:; R u= x:A(qP)y:B Session Record
1099 q w= nil | V| V@q Queue
1100 Val == V Close Token
1101 | # Choice Label
1102 | clos(x, P) Process Closure
1103 | ty(T) Type Value
1104 | step Recursion Step
1105
112: Fig. 13. The Linear SAM Components (no exponentials)
1108
1109
1110
1111 (cut {P |x : A| O}, H) = (P, H[x : A(nil, {y/x}Q)y : A])P [SCut]
1112 —
o (fwdxy HIz: Alg, Q)x : B[y s Blga, Pyw : C]) = (P, HIz : A(q2@q1, Q)w : C]) [Sfwd]
1114 (close x,H|[x : 1{q, P)y : B]) = (P,H[x : 0{g@V/,0)y : B]) [S1]
1115
L6 (wait y; P,H[x : 0(v,0)y : L]) = (P,H) [S1]
7 (send x(z.R); Q,H[x : A® C{(q,P)y : B]) = (Q,H[x : C{q@clos(z,R), P)y : B])*" [S®]
1118
119 (recv y(w : A); Q, H[x:C{clos(z : A, R)@q, P)y:A % D]) = (Q, H[(x:C{q, P)y:D)™][w:A(nil, Ryz:A])?  [$%]
o (G QHLx: @rcL A Py < B]) = (QHlx : Au(q@#l, Py : B)™" [se]
1122 (case y {|# € L:Q¢}, H[x : A(#l@q, P)y : &¢e1Be]) B (Qui, H[(x : A(q, P)y : By)™]) [S&]
o (sendty x(T); Q, H[x : 3X.Alg, P)y : B]) = (Q, H[x : {T/X}A{q@ty(T), Pyy : B))"" (53]
1z (recvty y(X); Q. H[x : Aty(T)@q, P)y : VX : B]) = ({T/X}Q,H[(x : A{q, P)y : {T/X}B)"™]) [Sv]
1126
127 (unfold, x; Q, H[x : uX.A(q,P)y : B]) = (P,H[x : {uX.A/X}A{q@step, Q)y : B]) [Sy]
1128 (rec Y(u,w); QO [y,Z], H[x : A(step, P)y : vX.B]) =
1129 (P,H[x : A{nil, {(rec Y(u,w); Q)/YH{u,w/y,Z}Q)y : {vX.B/X}B])? [Sv]
1130
131 N.B.: (x:A{q, Q)y:B)™ = if (¢ = nil) then y:B(q, Q)x:A else x:A(q, Q)y:B
1132
133 (P, H[x:A{q, Q)y:B])™" = if (A+) then (P, H[x:A(q, Q)y : B]) else (Q, H[x:A{(q, P)y:B])
1134 (P, H[x:A(nil, Q)y:B])? % if (A+) then (P, H[x:A(nil, Q)y:B]) else (Q, H[y:B{nil, P)x:A])
1135
11: Fig. 14. The Linear SAM Transition Rules
1138
1139
1140

1141
L, captures the essence of the main concepts behind the SAM design, and facilitates the presentation of results and proofs.
1143 The remaining constructs will be considered latter in the paper (Section 6).
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5.1 Structure of the Linear SAM

The structure of the Linear SAM is presented in Figure 13. A configuration is a pair (P, H) where P is a (the currently
active) CLL process and H a heap. A heap is a mutable store of session records of the form x:A(g, P)y:B. In a session
record x:A{g, P)y:B, q is a queue storing the values already written, and P is a suspended CLL continuation process.
We may establish an analogy between a session record and a frame in the call stack of a functional language, where
q stores the “arguments” passed in a function call, and P represents the return “address”. This analogy — which is of
course just an approximation, since the SAM execution is more suggestive of co-routining rather than of a call-return
protocol — will be further elaborated is Section 8, while discussing our proof-of-concept implementation.

The names x, y represent (unique) references or pointers to the record, x representing the write endpoint and y the
read endpoint for the session. We could have modelled the heap with records accessed by a single reference z and
distinguish endpoints roles using some kind of notational qualification, e.g. z+ and z—, but prefer to use this equivalent
notation with distinct names x, y to facilitate the correspondence with CLLB). In any given heap H, all session endpoints
are pairwise distinct and every session record is referred by its two unique endpoint references, as suggested by the heap
representation as a map (SRef, SRef) — SessionRec. The SAM operation does not rely on general type information, just
on type polarity, which can be mostly statically determined. Nevertheless, in our formal description, we annotate session
record endpoints with their types (A, B); this is convenient for clarifying the SAM behaviour and for the correctness
proofs. We may omit type annotations when they may be easily recovered from the context.

The SAM queue values (cf. the CLLB queue values in Definition 4.1) are the close token (v'), representing the session
close handshake message, closures (clos(x, P)), representing sessions passed in communications via send / receive
operations, choice labels (#l), representing choices exercised in offer/choice operations, and types (ty(T)), representing
the types passed in communications via type send / receive operations. We also have the “step token” (step) representing
a recursion unfold request. The SAM executes (co)-recursive sessions lazily, in the sense that positive sections of a
session type are eagerly executed but only up to unfolds, and queues will therefore only store positive segments of
outputs that fall within a single recursion body. More details about these and other aspects of how queue values are used
during execution will be explained in detail shortly, while discussing the SAM transition rules. Notice that all processes
stored in a SAM configurations (P, H), either as the active process P or the processes suspended in session records and
closures in the heap H are source CLL processes, or, equivalently, stable CLLB processes with empty queues.

We now formally present the SAM execution rules in Figure 14. The SAM execution is driven by the top constructor
of the process active in the current configuration - there is a single rule for each process construct. Any execution
sequence is therefore fully deterministic. As already motivated in Section 3, at some well-defined steps the currently
running process must yield execution to another process, suspended in a session record. Such context switching steps
are absorbed by the transition rules, using the control operators on configurations presented in Figure 14 (bottom):
namely init-adjust, write-to-read adjust, and read-to-write adjust; these control operators use type polarity information

in a crucial way. We now discuss the transition rules in detail.

5.1.1 Cutand Forwarding. The [SCut] rule decomposes the cut, creates a fresh session record with the proper endpoints,
and proceeds execution with the process that holds the writer endpoint (of positive type). As already discussed, even
if the SAM operation is not generally guided by the structure of types, it relies on type polarity information. In the
transition rules we thus define some auxiliary operations (Figure 14, bottom), to adjust control of execution based on
type polarities. The operation (P(x), H[x:A{nil, O(y))y:A])? (init adjust) is used to prepare a newly created session (a
fresh session is always in write-mode, with empty queue), used in ([SCut], [S'®], [Sv]). It essentially schedules process
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P(x) for execution if the type A of x is positive, which then becomes the write endpoint, and suspends Q(y) at the
negative endpoint y. If A is negative, the record is set conversely, with Q(y) scheduled and P(x) suspended.

The [SFwd] rule involves “merging” two session records into a single one. By typing, and the readiness property
defined below (Definition 5.2), the session endpoints x and y must refer to different session records and be assigned
dual types B and B. Without loss of generality (because of fwd x y = fwd y x), we assume the forwarder fwd x y holds
the read and write endpoints at respectively x and y, with B negative and B positive. The process Q(z) suspended in
the session record z : A{q1, Q)x : B has written (via z) the contents of q;, whereas running process leading to fwd x y
has previously written gy. Thus, the process P(w) suspended in the session record y : B(gz, P)w : C is waiting to read
q2@q;. Execution then continues with P, notice the two prior session records with endpoints z, x and y, w are replaced

by a single session record with endpoints z, w.

5.1.2  Send and Receive, Close and Wait. Rule [S1] writes the close token to the queue, and switches control to the
suspended process P(y) holding the read endpoint. Rule [S_L] reads the close token from the queue, disposes the session
record, and continues execution.

Rule [S®] writes a closure to the queue, and either continues (if the type of the continuation session type positive) or
switches control to the suspended process P(y), holding the read endpoint (if the continuation session type is negative).
The control choice is implemented using the operation (P, H[x:A{q, Q)y:B])™" (write-to-read adjust), which is used to
prepare the state of the SAM after a positive (write) operation in an ongoing session ([S®], [S®], [S3]) — not needed
for [S1] since close x terminates the endpoint x usage. If the type of the write endpoint (positive polarity) x is (still)
positive after the transition, execution continues with P and the session in write-mode. Otherwise, if the type of the
write endpoint becomes negative, P has just enqueued the last value in the positive segment. The execution then
context-switches: process P is suspended, and process Q is activated, to eventually read from the queue g at y, with the
record in read-mode.

Rule [$'9] reads a closure clos(z, R) from the queue and creates a fresh session record (w:A(nil, R/Q)z:A), to handle
the interaction between R (at z) and the continuation Q of the receive process (at w). The scheduling choice of either R
and Q with respect to their (implicit) cut is handled by init-adjust (...)?, that activates either R or Q depending on the
polarity of the type of w (e.g., if A is positive, Q will write on w, so w is the positive endpoint and Q will be scheduled).
A further endpoint adjustment may be required with respect to the ongoing read sequence on y, using read-to-write
adjust (symmetric to write-to-read adjust). The operation (x:A{g, Q)y:B)"" (read-to-write adjust) is used to readjust the
polarity of session endpoints after a negative operation reads the last value from an ongoing session queue ([S%®], [S&],
[SV]) — not needed for [S] since wait y; P deallocates the terminated session. When the process holding the reader
endpoint y empties the queue g, it becomes necessary to swap end-point polarities (the record switches to write mode,

and y to positive polarity). Otherwise, the record endpoints retain the current polarities.

5.1.3 Choice and Offer. The rules [S®] and [S&] follow the pattern of [S®] and [S®], in a simpler setting. [S®] writes
a label to the queue, and [S&] reads a label from the queue, and chooses the appropriate branch of the offer process.

Write-to-read and read-to-write adjustments are applicable as expected.

5.1.4 Type Send and Receive. In rule [S3] the active process writes a type value ty(T) to the appropriate queue, and in
rule [SV] the active process reads a type from the queue, which is be substituted for the type parameter X in the body
continuation code. In our description of the Full SAM in Section 6 we will use environments to track type bindings,
rather than syntactical substitutions, which we adopt in this Section to avoid cluttering our presentation and proofs.
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5.1.5 Unfold and Co-Recursion. The rules for unfold and co-recursion follow the rules for CLLB but sequentially
schedule operations in a deterministic way that needs to escape the otherwise pervasive “write-bias” of the SAM. This
is because recursive (inductive types) may introduce sequences of positive operations of unbounded length.

Recovering the basic example of the type for natural numbers as defined in Section 2.8
recNat = @ {#Z :1,#S : Nat }
we observe that the full representation of the natural N is a process of the form
N(n : Nat) = (unfold, n; #S n;)Nunfold/, n;#Zn;close n

which exhibits a positive sequence with length of order N. To preserve the ability to statically bound queue lengths, the
SAM always performs a context switching at unfold unfold, n; P execution, yielding control to the dual co-recursive
endpoint, that will start a read sequence until executing the matching co-recursor rec Y(, w); Q [n, Z]. More precisely, in
rule [Ty] process unfold;, n; Q writes the recursion unfold token step to the queue, and the SAM immediately switches
context, yielding control to the process P that holds the dual endpoint, suspending the continuation Q in the session
record. Rule [Tv], always executed when the session under focus is in read mode will read the recursion unfold token
step, while the SAM switches context back to the code suspended after the triggering unfold, allowing subsequent
writes to complete. Besides bounding queues, this strategy is consistent with the overall lazy evaluation strategy of the
SAM, allowing inductive / co-inductive processes to interact via lazy streams, as generators and consumers. Our proofs
of correctness show in detail how this execution strategy satisfies all the required SAM safety invariants.

We illustrate with the simple example in Figure 15. Here, program main() calls printnat(n) on two(n). Notice that

although two(n) definitionally expands to the finite behavior
unfold,, n; #S n; unfold, n; #S n; unfold,, n;#Z n; close n

the SAM execution consumes the session n lazily, with the recursive process coroutining (cf. a generator) with the
co-recursive process, via the [Sy] and [Sv] transitions. We conclude the present Section with the detailed proofs of

correctness for the Linear SAM.

5.2 Correctness of the Linear SAM

We now state and prove that the Linear SAM correctly executes CLL programs. The main results state safety — every
execution of the SAM corresponds to a reduction sequence of CLL processes — and progress — any SAM configuration
reachable from a closed well-typed CLL process is either the terminated configuration (0, @), or still has a possible
reduction. The proofs build (1) on the tight relationship between CLL and CLLB fully developed in Section 4.2, and (2)
on the operational correspondences between reduction in CLLB and the SAM transition reduction. A key notion in
this development is configuration readiness (Definition 5.2), which characterises the invariant properties of SAM states,
which, together with basic typing constraints, are instrumental to prove the main safety and liveness properties.

In a ready configuration (P, H), whenever the running process P holds a session endpoint of negative type, and is
therefore about to execute a negative action (e.g., a receive or offer action) on it, it will always find an appropriate value
(resp. a closure or a label) to read from the appropriate session queue, an important requirement to establish progress.
As a consequence, no busy waiting or context switching will be necessary for reading actions, since the sequential
execution semantics of the SAM ensures that all values corresponding to a positive section of a session type have
always been enqueued (written into the queue) by the “caller” process process before the “callee” process takes over (to
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main() = cut { two(x) |x : Nat| printnat(x) }

printnat(n : Nat) = rec Z(u);case u { #Z : wait u;0, #S: Z(u) } [n]
(main(n),0) =
(cut { two(n) |n : Nat| printnat(n) },0) =  [SCut]
(two(x), [x(nil, printnat(y))y]) =  [Su]
(printnat(y), [x(step, #S x;one(x))y]) =  [Sv]
(#S x; 0ne(x), [x(nil, case y { #Z : wait y;0,#S : printnat(y) }y]) = [S&]
(one(x), [x(#S, case y { #Z : wait y; 0, #S : printnat(y) Hy]) =  [Sy]
(case y { #Z : wait y; 0, #S : printnat(y) }, [x(#S@step,one(x))y]) =  [S&]
(printnat(y), [x(step, one(x))y]) =  [Sv]
(#S x; zero(x), [x(nil, case y { #Z : wait y; 0, #S : printnat(y) })y]) & [S®]
(zero(x), [x(#S, case y { #Z : wait y; 0, #S : printnat(y) })y]) =  [Sy]
(case y { #Z : wait y; 0, #S : printnat(y) }, [x(#S@step, zero(x))y]) =  [S&]
(printnat(y), [x(step, zero(x))y]) =  [Sv]
(#Z x; close x, [x(nil, case y { #Z : wait y;0,#S : printnat(y) }y]) = [S&]
(close x, [x(#Z, case y { #Z : wait y; 0, #S : printnat(y) })y]) =  [S1]
(case y { #Z : wait y; 0, #S : printnat(y) }, [x(#Z@V,0)y]) =  [S&]
(wait 5; 0, [x(v,0)y]) =  [SL]
(0,0)

Fig. 15. Example Trace for Recursion in the SAM

read from the queue). As discussed in Section 3 it might not seem obvious whether all such input endpoint (including
endpoints passed around in higher-order communications via send / receive) always refer to non-empty queues in the
specific execution strategy fixed for the SAM.

The effect of such interleaved read and write phases are captured in the notion of ready configuration by requiring
every session record x:A(g, R)y:B stored in the heap to necessarily be in one of two exclusive “modes”: write-mode or
read-mode. To intuitively motivate these ideas, we illustrate the life cycle of a session record (Figure 16). We structure
our discussion by first covering the SAM behaviour on the simpler recursion-free fragment, and introduce recursion
afterwards as a second step.

A session record x:A{q, R)y:B is in write-mode if its free access point is the write endpoint x, owned by some process
P about to write to the queue g, so the type A is positive. In this case, y € fn(R) and R = R(y) is the process holding the
other dual endpoint of the session, waiting for the writing phase to complete. A writing phase may terminate either
because P closes the session (P = close x and A transitions to @ by [S1]) or the write endpoint type A becomes negative
(that is, the session type changes polarity from positive to negative). If A becomes non-positive after a write step, then
the session record will switch to read mode (by write-to-read adjust), with process R(y) starting to read from queue g
at endpoint y (illustrated by the transition from write-mode to read-mode in Figure 16 (top, left to right)). Notice that
we with represent the active endpoint by a hollow bullet o and the suspended endpoint by a filled bullet .

A session record x:A(q, P)y:B is in read-mode if its free access point is the read endpoint y, with reading being
performed by some process Q(y) owning endpoint y (so y ¢ fn(P) by linearity). In this case, P is the suspended process
that, having written to the queue, either closed the session (P = 0 and A = 0) or terminated the write phase due to
session polarity inversion and is now waiting to read on x (with x € fn(P) and A negative). The queue ¢ must be
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not A+

write-mode read-mode

[Sv] A+

=]

read-mode

[Sv]A+

«:B(q, ) oA
q = q'@step

g =nil

LA (g, ) o:B

q = q'@step

read-mode

read-mode write-mode

not B+

Fig. 16. Session Record Life Cycle.

non-empty (q # nil). A reading phase terminates when the queue becomes empty after a read operations. If the last
value read is v/, the session record reaches the end of its life, the session terminating by [SL]. Otherwise, the read
endpoint type B becomes positive (because if the queue is empty; it is the dual of A which is known to be negative).
This is because the session on y by Q is now changing polarity from negative to positive. The session record will then
switch write mode as an effect of read-to-write adjust, which involves swapping the endpoints and let Q proceed with
writing on y. (illustrated by the transition from read-mode to write-mode in Figure 16 (right, top to bottom)).

In our session life cycle sketch, the evolution from bottom right (write-mode) to top left (write mode) via bottom left,
is symmetric to the evolution just described, with endpoints reversing roles. This reflects the iterated general sequence
of communications between two processes P(x) and Q(y) interacting in a session with endpoints x and y: write phase
by P(x) ; read phase by Q(y) ; write phase by Q(y); read phase by P(x), and so on.

Having explained the SAM behaviour on the basic CLL fragment, we can now cover the recursion and co-recursion
constructs, and the specific process co-routing pattern associated to it. Unfolding of recursion is lazily controlled by
the passing of step tokens from the inductive typed endpoint to the co-inductive typed endpoint. This is illustrated
in the figure by the transitions labeled with “unfold” and “corec”. When a session record x:A{g, R)y:B is in write
mode but the current operation is unfold (so that A = uX.C is a positive) the record switches to read mode by [Sy]
as x:{A/X}C{(q@step, R)y:B. The record will continue in read mode until the matching corec becomes exposed, in
a state like x:{A/X}C(step, R)y:vX.C. It will then transition by [Sv] to write mode as x:{A/X}C(nil, Ryy:{B/X}C or
y:{B/X}C(nil, Ryx:{A/X}C, depending on which of {A/X}C or {B/X}C is positive. Notice that this protocol ensures
that queues may contain at most one step token at any given time, always in the last queue position, and only in
read-mode session records. Recursion/co-recursion related phases are also depicted in Figure 16 in the two states in the
center, connected by [Sy] or [Sv] transitions.

Motivated by the prior analysis, we now present the following definitions, which characterise the key invariants of
safe SAM configurations, based on session record modes and related properties. We say that a queue q is step-terminated

if ¢ = ¢’ @step and step ¢ ¢’.
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Definition 5.1 (Modes). In a well-moded session record x:A({g, R)y:B, at most one of x, y may occur free in R. Moreover,
well-moded session record is in:
(1) write-mode, if y € fn(R), A is positive and step ¢ gq.
(2) read-mode, if x € fn(R) or R = 0 and either
(a) Ais not positive and step ¢ g, or

(b) g is step-terminated.

Notice that read and write modes are exclusive, if a record is in write-mode then y € fn(R), while a record in read-
mode must have x € fn(R) (would contradict typing of cut) or R = 0 (would contradict y € fn(R)). As a consequence of

2(b) and queue typing (cf. Lemma 4.5(3)), we have q # nil for any record in read-mode.

Definition 5.2 (Ready Configuration). A SAM configuration (P, H) is ready if any session record in H is either in

write-mode or read-mode.

To prove our adequacy results, we need to formally relate SAM transitions with reductions in CLL. As explained
before Section 4, we use CLLB as a bridge. To that end, we define the following encoding of CLLB processes, that satisfy

certain structural conditions, into SAM states.

Definition 5.3 (Encoding CLLB to SAM). For well-typed CLLB processes P, P’ and well-formed heaps H, H’ let relation
(P,H) [N (P’, H") be defined by the rules.

(cut {P(x) |x:A [q] y:B| Q(y)}, H) [N (P(x),H[x:A{q, Q(y))y:B])  [Cut-write] (x(-)y in write mode)

(cut {P(x) [%:A [q] y:Bl| Q(y)}. H) B (Q(y). H[x:A(q. P(x))y:B]) [Cut-read] (x(-)y inread mode)
Given P +B 0, we write P B C for (P,0) ‘S’ Cand enc(P) = C for P = (A H), for A kL AwithA=Aor A=0.

Given a well-typed CLLB process P, whenever enc(P) is defined, it gives a SAM configuration (A, H) where all
top-level cuts in P covering A are represented in heap H by session records, leaving the unguarded action A as the
active process in the configuration. The well-formedness conditions in the definition of enc(.) ensure that all generated
session records are always well-moded, and that SAM configurations are always well-formed, in particular that all
processes embedded in (A, H), be it in the active position P or suspended in heap stored session records or closures are
always “source level” CLL processes (cf. CLLB processes with empty queues).

t
We write C 5 D if C = D by repeated use of SAM cut transitions [SCut]. We have

LEMMA 5.4 (READINESS OF ENCODING). Basic properties of .
(1) IfC is ready and C i D, then C = D with D is ready.
(2) If(P,H) is ready and P +cL A then (P,H) ey (A,H’) =C and (P,H) Cg* C,forA=AorA=0.
(3) IfP rcLL O then enc(P) is ready.

ProOF. (1) Any S step in a ready configuration creates a new session record in either write- or read-mode. (2) For a
CLL process P, (P,H) £ C must be by [Cut-write] coinciding with [SCut]. (3) By (1,2) applied to (P, 0) Y enc(P). O

A SAM configuration C is live if C = (A, H).

LEMMA 5.5 (SAM-CLLB STEP SAFETY). Let P +B 0 and enc(P) a ready SAM configuration. If enc(P) is live then (1)

encx*

tx
there is C ready such that enc(P) = C and (2) there is Q such thatP -8 Q and 0 = C =t enc(Q).
Manuscript submitted to ACM
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ProoF. See Appendix 10.3. We show that each SAM transition corresponds to a reduction in the CLLB process
encoded by the machine configuration. An auxiliary technical result states for every ready configuration enc(P) = (A, H)
there are CLLB process contexts E, F such that P = E[F[A]]. We then show that for every SAM transition (A,H) = C

encx*

F[A] is a principal cut redex such that F[A] —8 R and thus P = E[F[A]] —BE[R] & C. O

We then have

THEOREM 5.6 (SOUNDNESS WRT CLLB). Let P +-B 0 and enc(P) a ready SAM configuration. If enc(P) 5 C then there

enc

is Q such thatP =B Q and Q =

Proor. In Appendix 10.3. By induction on the number n of transition steps in enc(P) = C. O

Combining the previous results with the operational correspondence between CLL and CLLB (Theorem 4.15) we
obtain an overall soundness result for the Linear SAM relative to CLL. Every SAM execution starting from a well-typed
closed CLL process P up to a a configuration C corresponds to a CLL reduction sequence that starts in P and terminates

in a CLL process Q represented by C up to some anticipated positive (enqueueing) and forwarding operations.

THEOREM 5.7 (SOUNDNESS WRT CLL). Let P ¢y 0.

C*

If (P, 0) & C then there is Q such that P =¢ Q and QF=Bap B e.

Proor. Let enc(P) > C. By Lemma 5.4 (2), enc(P) is ready. By Theorem 5.6, there is Q’ such that P =B Q’ and
encs* enc

Q' B C.By Theorem 4.15 (2), there is Q such that P =¢; Q and 0T=82P 0’ We conclude Qf=B2p o’ C. O

We now state our progress result. Any SAM execution starting from a well-typed process either reaches the inaction

process in the empty heap, with all store deallocated, or is able to make a further transition.

THEOREM 5.8 (PROGRESS). Let P ¢ 0. If (P, 0) té C then either C = (0,0) or there is C’ such that C = C’.

Proor. We first prove the following property (P 5.8): Let P "CLLB 0, and P etn:C> D= = C Clg* enc(P), then either
= (0,0) or there is C’ such that C = C’. (Proof: Either C |:> C’'orenq(P) =C=(AH)withA=0orA=ATIf

A =0, we must have H = (. Otherwise C is live, and by Lemma 5.5 there is C’ such that C = C’).

To prove the Theorem, we break the hyp (P, 0) B C (by determinism of =) in the two cases: either (a) (P,0) = CUt*
C Cluﬂ* enc(P) or (b) (P,0) |=> enc(P) & C. For (a), we conclude by P 5.8. For (b), we proceed by induction on
the number n of transition steps in enc(P) é C. (Base case n = 0) Then enc(P) = C and we conclude by P 5.8.
(Inductlve case n =1+ n’) Then enc(P) = D I:> C,so enc(P) is live. By Lemma 5.5, there is Q such that P —2 Q and
Q= B D |=> enc(Q). We consider two cases, either (1) D |=> enc(Q) ):> Cwithn” <nor(2) D = § CUt = enc(Q).
For (1) we conclude by the i.h.. For (2), we conclude by P 5.8. m]

ut*

Theorem 5.8 asserts that SAM executions on well-typed processes never get stuck, but also a “no garbage left”
property, in the sense that a terminated computation always leaves an empty heap. Although termination is not a
consequence of our results just presented, it is a consequence of the soundness property (Theorem 5.7) via the strong
normalisation property of CLL [65, 68].
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S (E,P,H) State
R a,b SRef
H (SRef, SRef) — SessionRec Heap
SessionRec a(q, &, P)b
q nil | Val | g@q Queue
Val $ v Close token
| #l Choice label
| clos(z, &, P) Linear Closure
| clos!(z, &, P) Exponential Closure
| ty(T) Type Value
| step Recursion Step
EG,F = Name — (SRef Uclos!(z,E,P)) Environment

Fig. 17. The Environment based SAM for full CLL.

6 THE LINEAR SAM FOR FULL CLL

In the previous sections, to simplify the formal presentation of the SAM, the proofs of its meta-theory, and discuss its
design at a more intuitive level, we adopted an abstract formalisation of the operational semantics, relying on (implicit)
a-conversion, and overloading language syntax names for the intended heap references for session records. However,
to handle our full language with exponentials and bring the SAM execution model closer to a low level implementation,
it now introduce in it a more traditional environment structure allowing us to get rid of syntactic substitutions from
the definition of transition rules, as implemented in most abstract machines since Landin’s SECD [48]. Notice that, to
avoid excessive notational burden, we do not use the environment to track type substitutions (although we might have
done s0), so all types in configurations are closed. Another reason for doing so is that our dynamical use of types in the
SAM is mostly computationally irrelevant, and essentially useful for our correctness proofs.

We thus reformulate the SAM as presented in Figure 17. Formally, a SAM configuration is a triple (&, P, H) where
& is an environment. Formally, an environment G is a finite map that sends (linear) names to heap record endpoint
SRef and exponential names to replicated process closures, injective on linear names. These heap references are freshly
allocated and unique, thus avoiding any clashes and enforcing proper static scoping. Process closures, representing
suspended linear (clos(z, &, P)) and (exponential) behaviour (clos!(z, &, P)), pair the code in its environment.

In Figure 18 we present the execution rules for the environment-based SAM. All rules except those for exponentials
have already been essentially presented in Fig. 14 and discussed in previous sections. The only changes from are due to
the presence of environments, which record the bindings for free names in the code.

Recall that the SAM operation relies on some type information, namely, polarity information is required in the cut
rule, in the rules for session receive [’®] and replicated session invocation [Scall]. In the basic first-order typed language,
such polarity information may be statically identified at type-checking and used to tag the code before execution.
However, in the presence of type parametricity as we now consider, the polarity of the instantiation of a parametric
type may depend in general on the polarity of the types used to substitute its free type variables, so, for simplicity, we
assume that types are explicitly inspected at runtime for polarity (see, e.g., in rule [SCut]).
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(&, cut {P |x : A| Q},H) & (G, P,H[a : A(nil, F, Q)b:A])? [SCut]
a,b=new,G = &E{a/x}, F = E{b/x}, At

(&, fwd x y,H[c : A{q1,G,Q)a : B][b: D{q2, F,P)c:C]) = (F,P,H[c: A(q2@q1, G, Q)d : C]) [Sfwd]
a=3&(x),b=38(y)

(&, close x,H[a:1{q, F,P)b : B]) = (F,P,H[a : 0{g@V,0,0)b : B]) [S1]
a=6&(x)
(& waity; P,H[a : 0¢v/,0,0)b : L]) = (&, P,H) [S1]
b=8&(y)
(&,send x(z.R); O, H[a:A ® C{q, G, P)b:B]) = (&, Q, H[a:C{q@clos(z:A, E,R), G, P)b:B])"" [S®]
a=68(x)
(&, recv y(w); Q, H[a:C{clos(z:A, F, R)@q, G, P)b:A 9 D]) =

(&', 0. H[(a:C{q, G, PYb:D)™] [e:A(nil, F', R) f:A] )P [S%]
e,f =new,b=E(y),& =&{e/w}, F' =F{f/z}
(& #l x;Q,Hla: ®;crAr{q, G, P)b: B]) = (E,0Q,H[a: Ay{q@#l, G, P)b : B))*" [Se]
a=6&(x)
(&, case y {|# € L:Qr}, H[a : A(#l@q, G, PYb : &se1.Br]) & (6,Qu, Hl(a: Alq, G, P)b : By)™])  [S&]
b=&E(y)
(&, cut! {y.R |!x:A| P},H) = (G,P,H) [SCut!]
G = &{clos!(y:A, &, R) /x}
(&, 'x(2); Q,H|[a:'A{q, G, P)b:B]) = (G, P, H[a:0{q@clos!(z:A, &, Q), 0, 0)b:B]) [S!]
a=6&(x)
(&,7y; Q,H[a:0{clos!(z:B, F,R), 0,0)b:?B]) = (G, Q,H) [S?]

b=8(y),G = &{clos!(z:B,F,R) [y}

(&, call y(w); O, H) = (&, 0, H[a:A(nil, ', Ryb:A])? [Scall]
a,b=new, & = &E{a/w}, F' = F{b/z},clos!(z: A, F,R) = E(v)

N.B.: (a:A{q, G, Q)b:B)™ £ if q = nil then b:B(q, G, Q)a:A else a:A{q, G, Q)b:B
(&,P,H[a:A{q, G, Q)b:B])"" £ if A+ then (&, P, H[a:A{q, G, Q)b:B]) else (G, O, H[a:A{q, E, P)b:B])
(&, P,H[a:A(nil, G, Q)b:B])P £ if A+ then (&, P, H[a:A(nil, G, Q)b:B]) else (G, Q, H[b:B(nil, &, P)a:A])

Fig. 18. The Linear SAM Transition Rules (Full Classical Linear Logic with Exponentials).

We now discuss the SAM rules for the exponentials ([S!], [S?], [Scall+] and [Scall-]). Values of exponential type
are represented by exponential closures clos!(z, 7, R). Recall that a session type may terminate in either 1, L or in
a exponential !A/?A (cf. 4.7). So, the (positive) execution rule [S!] is similar to rule [S1]: it enqueues the closure
representing the replicated process, and switches context, since the session terminates (cf. [!] Fig. 10). The execution
rule [S?] is similar to rule [S'®]: it pops a closure from the queue (which, in this case, becomes empty), and instead of
using it immediately, adds it to the environment to become persistently available (cf. reduction rule [S?] Fig. 10).
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(&,sendty x(T); Q, H[a:3X.A{q, G, P)b:B]) = (&,Q, H[a:{T/X}A{q@ty(T), G, P)b:B])"" [$3]
a=E&E(x)

(&, recvty y(X); Q. H[a:A(ty(T)@q. G, P)b:¥X.B]) & (&, {T/X}Q, H[(a:A(q, G, P)b{T/X}B)"™]) (SV]
b=&(y)

(&, unfold, x;Q, H[a:uX .A(q, G, P)b:B]) = (G, P, H[a:{uX .A/ X }A{q@step, E, Q)b:B]) [Sy]
a=8(x)
(&, rec Y(u,w); Q [y, Z], H[a:A(step, G, P)b:vX .B]) =

(G, P,H[a:A{nil, F, {(rec Y(u,w); Q)/Y}Q)b:{vX.B/X}B])? [Swvv]
b=8(y),F =&E{EW) /[uHERE)/w}

Fig. 19. The Linear SAM Transition Rules (Polymorphism and Recursion)

Any environment stored closure holding a replicated process may be called by client code via the transition rules
[Scall], which for each invocation create a new linear session object to be composed (passed to) the client code. Thus,
rule [Scall] operates in a similar way to rule [S’®], instead of activating a linear closure popped from the queue, it
activates an replicable closure fetched from the environment. The need for adjusting the endpoint of the newly created
linear session, depending on the polarity of the type of the new session endpoint name w. We implement this polarity
dependence using the two variant rules [Scall+] and [Scall-] as already discussed in Section 3 for the case of [S'®].
Notice that the process closure passed in send and receive ([S®] and [ [S’®]) are linear linearly, thus transfered with
unique ownership from sender to queue and from queue to receiver without any need to be stored in the environment,
unlike replicated closures, which are potentially shareable in client code. The [SCut!] rule simply binds the cut!-bound
replicated closure bound in the environment, and proceeds with the execution of P.

The SAM rules for the polymorphic types and recursion are presented in Figure 19. For the case of type send and
receive, types are passed around with type values ty(T), where T is a closed type. Notice the type substitution applied
to the continuation Q, in [SY].

Given the analogy of the recursion-related rules [Sy] and [Sv] with the related CLLB rules [¢] and [v], they barely
deserve any special remark. Notice however how the SAM uses the environment to bind arguments to parameters in
the rule for the co-recursive call [Sv]. We now proceed our technical development and update our meta-theoretical

results for the environment-based Linear SAM.

6.1 Correctness of the Environment-based Linear SAM

The proofs of soundness and progress for the environment-based linear SAM follow the pattern of our development in
Section 5.2. We first reformulate the notion of configuration readiness (c.f. Definition 5.2) to express the SAM invariants
now required to deal with the presence of environments, closures, and exponential constructs.

We say an environment G covers a process P is dom(G) C fn(P).

Definition 6.1 (Modes). In a well-moded session record a:A{q, G, R)b:B, G covers R and at most one of a, b may occur
free in G(R). Moreover, a well-moded session record is in:
(1) write-mode, if b € fn(G(R)), A is positive and step ¢ q.
(2) read-mode, if a € fn(G(R)) or R = 0 and either

(a) A is not positive and step ¢ g, or
Manuscript submitted to ACM
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(b) q is step-terminated.

Definition 6.2 (Ready Configuration). A SAM configuration (&, P, H) is ready if & covers P and H, and any session

record in H is either in write-mode or read-mode.

Definition 6.3 handles encodings of CLLB processes into environment-based SAM configurations, along the lines of
Definition 5.3 but now dealing with environments. We first introduce the following notations:

Write & =p G if G(x) = E(x) for all of x € fn(P).

Write & =, p G if G(x) = E(x) for all of x € fn(P) \ z.

Let g be a CLLB queue and q a (environment-based) SAM queue.

Write ge ~ qg if ge; = clos(z, 7, R) (resp. clos!(z, 7, R)) iff g; = clos(z, R) (resp. clos!(z,R)) and ¥ ~, g G-

Definition 6.3 (Encoding CLLB to full SAM). For environments &, &', well-typed CLLB processes P, P’ and well-formed
heaps H, H’ let relation (&, P, H) ey (&, P’, H’) be defined by the rules.

(8. cut {P(x) [%:A [q] y:B| Q()}, H) B (G, P(x), H[a:A(ge, F, Q(y))b:B]) [EC+]  (a(~) b write-mode)
(&.cut {P(x) TA [q] y:B| Q()}.H) B (F.Q(y). Hla:Alge. G. P(x))b:B]) [EC-]  (a(-) b read-mode)
where & 2g(y) &{b/y} and G ~p() E{a/x} and ge ~ qg
(& cut! {y.R|x: Al P}LH) B> (&{clos!(y, F,R)/x},P,H) [E!]
where £~y p(y) &

nces cex

Given P B 0; 0, we write P erg* C for (0,P,0) et:> C and ence(P) = C for P e?:> (E,A, H), where C = (E,A,H) for
AvrcLL AwithA=AorA=0.

The encoding introduces environments in session records and closures that (over)approximate all environments
possibly generated in a computation (via the equivalences & ~p G). This strengthened property, required by our
correctness proofs, enables the encoding to emulate all possible closures created in histories prior to the current CLLB

state ence(P), which may contain irrelevant bindings. We can show

ence
LEMMA 6.4 (READINESS OF §-ENCODING). Basic properties of = .

(1) IfC isready and C Iy D, then C = D with D is ready.
ence*

(2) If(E,P,H) isready and P +¢cL A then (§,P,H) & (&,AH')=C and (E,P,H) clu=t>* C,forA=AorA=0.
(3) IfP rcLL O then ence(P) is ready.

enc . . . .. .
ProoF. (1) Any = step in a ready configuration creates a new session record in either write- or read-mode. (2) For a
CLL process P, (&, P, H) B’ C must be by [Cut-write], matching [SCut]. (3) By (1,2) applied to (0, P, 0) iy enc(P). O
A SAM configuration C = (&, P, H) is live if P = A.

LEMMA 6.5 (SAM-CLLB &-STEP SAFETY). Let P +B 0 and ence(P) a ready SAM configuration. If ence(P) is live then

(1) there is C ready such that ence(P) = C and (2) there is Q such that P —B QandQ eg* () Cét»* enc(Q).

PRroOF. See Appendix 10.4, we detail the cases for exponentials. Similar to the proof of Lemma 5.5. O

THEOREM 6.6 (SAM SOUNDNESs WRT CLLB). Let P +B ;0 and ence(P) ready.
encex

kS
Ifence(P) = C then there is Q such that P =B 0oand0 = C.
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ProOF. Similar to the proof of Lemma 5.6, using Lemma 6.5. O

THEOREM 6.7 (SAM SouNDNESs WRT CLL). Let P + 0; 0.
If (0,P,0) & C then there is Q such that P =¢1 Q and QF=Bap ‘Ee.

ProoF. Similar to the proof of Lemma 5.7, but using Theorem 6.6. O

An environment-based SAM configuration C live if C = (&,P,H) if P # 0.
THEOREM 6.8 (SAM ProGReEss). Let P k¢ 0. If (0, P, 0) 5 C then either C = (0,0) or there is C’ such that C = C’.

Proor. Similar to Theorem 5.8, but using Lemma 6.5. O

7 CONCURRENT SEMANTICS

We have argued that our design for the SAM provides an effective deterministic execution model for the implicitly
sequential session-typed program idioms. Of course, in general one often want parts of programs to be executed
concurrently, at various levels of granularity. In this section, we demonstrate how the Linear SAM supports the ability to
naturally segregate and coordinate, at a fine-grain, both sequential and concurrent behaviours, as generally supported by
the session calculus. We claim that the SAM provides a principled basis to approach a unified execution model on which
essentially sequential parts of session-based programs may be efficiently executed by the deterministic application of
SAM transitions, without concurrent synchronisation mechanisms, while explicitly parallel and concurrent execution
and may be selectively used whenever necessary, for performance or functional requirements.

In this Section we discuss the extension of the Linear SAM from a single-threaded machine to a multi-threaded
machine that supports the concurrent execution of CLL processes composed by concurrent versions of mix and cut,
semantically equivalent to the basic cut and mix constructs in all accounts (typing rules and conversions / reductions),

but where the composed processes execute in separate threads.

P

| ccut {P[x:A[Q} | cpar{P[|Q}

To facilitate our presentation, we revert to the basic SAM introduced in Section 3 without environments and exponentials,
since such features are orthogonal to our focus on concurrency. This allows us to develop the concurrent SAM as an
extra modular layer on top of the basic architecture and transition semantics, which we keep untouched.

The fundamental step, presented in Figure 20, consists in extending configurations from pairs process/heap (P, H)
to pairs process-multiset/heap (M, H), where M is a multiset of processes P;¢. Intuitively, each process P; in M is
executing in a separate, concurrent thread, thus M plays the role of a thread pool.

Moreover, the concurrent SAM architecture adds concurrent session records, noted a (q) b, to the basic session
records of the SAM as defined in Section 5. While basic session records support sequential session interaction using
co-routining, concurrent session records support concurrent (and/or parallel) session interaction. A concurrent session
record corresponds essentially to a bidirectional concurrent message queue g, asynchronously accessed by session-
interacting processes via the endpoints a and b. Each individual thread P; € M executes locally according to the Linear
SAM sequential and deterministic semantics presented in prior Sections, executing actions on sequential session record
endpoints, until a concurrent process action, that is, an action (send / receive / selection / etc. ) on an endpoint of a
concurrent queue, is reached.
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M = {P,P,,...,Pp} Process Multiset)
S x= (M, H) (Concurrent SAM Configuration)
SessionRec == x{(q,P)y (Sequential Session Record)

| x{qQy (Concurrent Session Record)

Fig. 20. The Concurrent SAM.

(P.H) = (P',H') (M, H) ¢ (M, H")
(PUMH) ¢ (P’ W M H) (0w M H) =° (M, H)

(ccut {P |x : A*| Q} w M, H) =° ({P,Q{y/x}} w M}, H[x : A(nil)y : A]) [SCutp]
((P[1Q)wM,.H) = ({P,Q} w M}, H) [SMixp]

[Srunc] [Sop]

Fig. 21. Transition rules for Concurrent SAM configurations

We define in Figure 21 the transition system for the execution relation of concurrent SAM configurations, represented
by C ¢ C’. 1t is essentially defined as an extra layer on top of the rules for the sequential system, that expresses
execution for each single thread. Concurrency is modelled by the non-deterministic interleaving of atomic steps from
each sequential thread. The basic SAM execution rule for a single thread, based on S = S’, is now used to define a
one step execution on a concurrent SAM configuration, as expressed by rule [Srunc]; it non-deterministically picks a
(ready) process P in the multiset and performs one transition step on P using the basic transition system of Section 5.

Notice that a single common heap is shared by all processes in M. As shown below, the CLL type system ensures
that all session record usages are safely used by the concurrent running processes, due to the linear typing. Rule [SOp]
clears a terminated thread, while rules [SMixp] and [SCutp] forks the current thread into two new threads. For [SCutp]
a new concurrent session record is created, connecting the two processes in the queue, while for [SMixp] the threads
are set to simply run in parallel. Notice that, remarkably, our uniform logical foundation naturally supports concurrent
versions of cut and mix to freely and safely combine with their sequential versions, since they all satisfy the same

congruence rules, even if executed under different strategies. As an example, consider the processes
cut {P|x: Al cut {Q |y: Al R}} ccut{P[x:A|lcut{Q|y:A R} cut{P|x:A|ccut{Q |y:A|lR}}

which are convertible modulo structural equivalence, but implement different execution strategies. On the left, the
whole process is executed using the SAM sequential strategy. In the middle P and cut {Q |y : A| R} are executed
concurrently via busy waiting on messages exchanged in x, while Q and R execute sequentially by co-routining, while
on the right the converse happens.

Concurrent process actions on concurrent queues are assumed to be implemented as atomic isolated transactions. In
the operational semantics, concurrent actions are defined in a way similar to the “in thread” sequential ones, except
that while in the sequential semantics computation we know that negative (read) operations are only performed on
non-empty queues (session records in read-mode), in the concurrent semantics that is not the case, hence negative
actions (e.g., session receive) are blocking. More concretely, while concurrent positive actions (e.g., session send) always
progress by writing a value into the write endpoint of the queue, concurrent negative actions will either read off a
value from the queue if such value is available, or block, waiting for a value to become available. However, we may

Manuscript submitted to ACM



1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871

1872

36 Luis Caires and Bernardo Toninho

(close x, H[x (q) y]) & (0, H[x (@) y]) [
(wait y; P, H[x(v, y)]) = (P,H) [
(send x(2.R); Q, H[x (q) y]) = (Q. H[x (g@clos(z, R)) y]) [
(recv y(w); Q, H[x {clos(z, R)@q) y]) = (R, H[x (q) y"*][z(nil, Q)w])P [S®c]
(fwd x y, H[z{q1) x][y {(g2) w]) & (0, H[z {q2@q1) W]) [
(fwd x y, H[z {q1) x] [y{q2, Q)w]) & (Q, H[z (q2@q1) W]) [
(fwd x y, H[z{(q1, Q)x][y (g2) w]) & (Q, H[z (q2@q1) W]) [

a{qyb™ £ if (q = nil) then b (q) aelse a(q) b
(P,H[x:A(nily y:B])? £ if (A+) then (P, H[x:A (nil) y:B]) else (P, H[y:B {nil) x:A])

Fig. 22. Additional SAM Transition Rules for concurrent actions (sample)

prove (Theorem 7.6) that in our typed language any such waiting processes will always progress , since the process
holding the dual endpoint will eventually write the expected value in the queue. The technical development and results
presented below make this claim precise. We present in Figure 22 the concurrent SAM transition rules for 1, L,®,’® typed
actions, it should be clear how to define rules for other actions, since they follow the same pattern. When the endpoints
in as forwarder refer to session records of the same kind (concurrent or sequential), forwarding is implemented by
queue merging, yielding a single session record of the given kind. In the case for forwarding between session records of
different kinds (one sequential and the other concurrent), the merge results into a concurrent session record. These
rules extend the basic transition system of Figure 14, invoked by the premise of rule [SRunc], and apply to single thread

execution. To define readiness for concurrent configurations we essentially need to require readiness for every thread.
Definition 7.1 (Ready). Configuration S = (M, H) is ready if for all P € M the configuration Cp = (P, H) is ready.

Notice that readiness for concurrent session records does not involve read/write modes, required in the sequential
case to ensure progress. We now define an appropriate encoding & of concurrent CLLB processes into concurrent
SAM states. The definition relies on enc(P, H) (Definition 5.3) in the base case [Thr] to encode a single thread.

Definition 7.2 (Encoding CLLB to CSAM). For multisets M, M’ of well-typed CLLB processes and well-formed heaps

encec*

H, H’ let relation (M,H) = (M, H’) be defined by the rules.

({0} w M, H) B (M, H) [Co]

({Prwu M, H) B ({0} w M H) if enc(P,H) & (Q,H’) [CThr]
(cpar {P[| Q} & M, H) B ({P,Q} w M, H) [CMix]
(ccut {P % : Alqly : B| Q} & M.H) B ({P,Q} w M, H[x (g} y]) [CCut]

Given P +B 0, write P 57 C for (P,0) ‘5" Cand encc(P) = C for P =" (A H), Aj FeLL A; with A; = A.

If encc(P) = (A, H) the active multiset A only contains action processes A ready for execution or is empty. We
t
expected the following basic sanity properties (cf. Lemma 5.4). We write C S DifC B D by repeated use of

Concurrent SAM cut transitions [CCutp], [CMixp], [COp], and [SCut] (via [Srunc]).
Manuscript submitted to ACM
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encc
LEMMA 7.3 (READINESS OF ENCODING). Basic properties of = .

(1) IfC isready and C B D, then C = D with D is ready.
) If (M, H) is ready and M rcry A then (M H) 5" (A H) = C and (M H) &' C.
(3) IfP rcLL O then encc(P) is ready.

Proor. Similar to the proof of Lemma 5.4. O
A concurrent SAM configuration C is live if C = (M, H) with A € M. We have

LEMMA 7.4 (CSAM-CLLB STEP SAFETY). Let P +-B 0 and encc(P) a ready SAM configuration. If ence(P) is live then (1)

there is C ready such that ence(P) = C and (2) there is Q such that P —B Q and Q ‘e cbg* ence(Q).
ProoF. See Appendix 10.5. The proof modularly combines progress for the sequential SAM (cf. Lemma 5.5) with the

proof for general progress for CLLB, which is based on the technique of inductive observations (cf. Lemma 4.9). O

We build on the strong properties identified in main Lemma 7.4 to state the following soundness results for the

concurrent SAM. The proofs closely follow the structure developed in Section 5 for the basic Linear SAM.

THEOREM 7.5 (CSAM SOUNDNESs WRT CLL). Let P ¢y 0.
If ({P},0) = C then there is Q such that P =¢| Q and QT:>Bap = C.

Proor. Based on Lemma 7.4, follow the proof steps of Theorem 5.7. O

THEOREM 7.6 (CSAM PrOGRESS). Let P ¢y 0. If ({P}, 0) &5 C then either C = (0,0) orthere isC’' suchthatC = C’.
Proor. Based on Lemma 7.4, follow the proof steps of Theorem 5.8. O

The concurrent SAM executes concurrent session programs consisting in an arbitrary number of concurrent threads.
Each thread deterministically executes sequential code, but can at any moment spawn new concurrent threads. Re-
markably, the whole model is expressed in the common language of linear logic, statically ensuring safety, proper
resource usage, termination, and deadlock absence by static typing. In particular, Theorem 7.6 states that any well-typed
will either progress or terminate in a leak-free configuration, where all heap records have been deallocated and all
concurrent threads have terminated. In the next section, we discuss an artifact implementation of the SAM, some

experimental results obtained, and discuss some possible pragmatic extensions.

8 IMPLEMENTATION AND EXPERIMENTAL RESULTS

In this section, we briefly describe our current prototype implementation of the SAM!. It is available in open source,
and provided as an alternative backend execution engine for our ongoing CLASS language development [18, 66—-69],
which provides a static type-checker and execution environment for CLASS programs. CLASS is a linear session-
based language whose core includes CLL as presented in this paper, and that flexibly supports realistic concurrent
programming idioms. Its linear logic based type system statically ensures that programs never misuse or leak stateful
resources or memory, they never deadlock, and they always terminate. The current version efficiently provides basic
datatypes (integers, booleans, strings), ML-style let expressions and conditionals, polymorphism, and recursive and
co-recursive types. The system also support a form of shareable mutable state [65, 66, 68], not considered in this paper.

The most recent version of the implementation with the examples of this paper may be found in [19].
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These first interpreters [18, 69] adopt a pervasive concurrent model of sessions, based on the java.util.concurrent.*
package, using fine-grained threading and locking to support synchronous session interaction. The work in this paper
was strongly motivated by experimentation with these implementations, and questioning whether an important bulk of
the computations could be efficiently sequentialised.

The implementation of the SAM discussed here covers the full basic CLL language as presented in Section 6 of this
paper, but leaves for future work the development of appropriate support for other features of CLASS. Nevertheless,
our SAM implementation already supports the basic CLASS datatypes and associated operations, and demonstrates the
practical feasibility of the model developed in the present work.

The machine is implemented as an interpreter that closely follows the architecture and transition system for the
environment-based SAM (Section 6). It deterministically manipulates machine configurations in a main loop that at
each iteration executes the transition associated to each program construct in the current environment and heap.

A machine state configuration is thus represented by the structure SAMState (Figure 23 (top)), that aggregates the
current code and environment(s), and is imperatively updated by the machine transitions. The SAM heap is not explicitly
represented in the SAMState, as session records are implicitly represented as host language objects. Queues on session
records are efficiently implemented with arrays and updated in place, where queue positions are directly indexed by
integer offsets determined at type-checking from the (session) types. This also allows us to statically determine the size
of session records from types, including in the presence of recursion, where the record space gets conveniently recycled
at unfold steps.

The SessionField slots[] field stores up to int size queue values during session execution. The slots[] indices are
used linearly, written once during a sequence of operations of positive polarity, and read once during the matching
sequence of operations of negative polarity, where the read operation clears (sets to null) the session slot contents.
The SessionClosure cont field stores a reference to the session “continuation” (suspended) process code P, it may be
understood by analogy to the “return address” of the activation record in a functional language implementation. The
SessionClosure cont field also holds the session record environment &, which would then correspond to the “dynamic
link” of the activation record in a functional language implementation as well. Session record endpoints are represented
by the structure IndexedSessionRef, that bundles a session record reference with the current write/read int offset in
the slots[] array, for technical reasons we prefer to store the currently active polarity in the boolean polarity field of
the session record. Notice that the the session offset is reset to 0 whenever a session moves from read mode to write
mode (empty queue), this allows the size of the slots[] array to be statically fixed as the length of the longer positive
section of its session type.

As a consequence of the linear typing discipline, the SAM promises a very efficient memory management scheme,
which we already approximate in our prototype. In particular, linear session records and associated environment entries
are explicitly allocated when sessions are created, and deallocated (in fact, recycled) after the session close/waits,
without any need for garbage-collection.

The toplevel REPL of the interpreter provides a trace option that lists the SAM execution. For instance, for the
example in Section 3.2, rewritten in CLASS source, we obtain the execution trace depicted in Figure 23 (middle). Each
line shows the SAM operation executed, the id of the active session record, and the current offset.

It is interesting to consider the execution metrics for some toy examples, comparing the fully concurrent execution
of [18, 69] with the more efficient linear SAM execution, as depicted in Figure 23 (bottom). We selected five benchmark
code samples. The SpeedUp column indicates the execution time ratio between the SAM execution and the basic fully

concurrent implementation. Not surprisingly even our fairly inefficient SAM interpreter may improve runtimes in 1-2
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SAMState { SessionRecord { IndexedSessionRef SessionClosure
ASTNode code; int size; extends SessionField { ~ extends SessionField {
Env<SessionField> env: SessionField slots[]; SessionRecord srec; String objectid;

SessionClosure cont; int offset; ASTNode code;
| boolean polarity; | Env<SessionField> env;
} }
(selected data structures)
type T1{
recv ~ lint; recv ~ lint; close
” > trace 1;;
type T2 { > sam example2();;
send lint; recv ~ lint; close id-op example2
¥ cut-op b SessionRecord@3d494fbf size=3
cut-op d SessionRecord@79fc0f2f size=3
proc P1(b: T1){ P
~ recv b(x); recv b(z); close b Is(:;(t)i’ic());)]d SessionRecord@79fc0f2f @ 0
b id-op R1
proc Q1(d:T2, b: ~ T1) { recv-op d Sessipn Record@79fc0f2f @ 0
send d(1); send b(3); fwd d b send-op d Sess,onRecord@79fc0f2f @0
ks send-op b SessionRecord@3d494fbf @ 0
? fwd-op b d SessionRecord@3d494fbf SessionRecord@79fcOf2f
proc R1(d: ~ T2) { id-op P1
d(y); send d(2); wait d;() recv-op b SessionRecord@3d494fbf @ 0
5 recv-op b SessionRecord@3d494fbf @ 1
le20) | clos-op b SessionRecord@3d494fbf @ 0
proc example wait-op d SessionRecord@3d494fbf @ 0
cut { empty-op
P1(b) | b:~ T1| Q1(d,b) | d:~ T2 | R1(d)
ks

(execution trace of sample code)

Benchmark SpeedUp | MaxMem | MaxMReqs
systemF X54,4 771(4) 1527k
bitcounter x19,7 12(5) 12
ackermann %x200,2 517(3) 2169k
primesieve X158,5 502(5) 502
cprimesieve | X155,2 502(5) 502

Fig. 23. On the SAM Implementation.

orders of magnitude, by fully exploring the complete sequentiality present in the selected examples. The two other
columns illustrate linear memory usage. The MaxMem column indicates the largest number of session records R of
maximum length k for the specific benchmark (in terms of number of slots), listing the values as R(k). For instance,
a benchmark whose largest session records use 4 slots and which allocates 10 such (distinct) records would indicate
10(4) in its MaxMem column. The MaxMReqs column indicates the total number of times the records referred to by the
MaxMem column were allocated.

The implemented benchmarks are as follows: systemF: This example explores a CLL encoding of recursive types
using second-order types and parametricity, along the lines of Wadler’s “recursion for free” [78, 81]. We encode naturals
(church numerals) as polymorphic processes, as well as the maps needed to primitively represent the ADT functors, the
associated fold and unfold operations, namely, we don’t use the primitive SAM implementation of recursion, just linear
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logic with exponentials and second order quantifiers. Thus, this benchmark heavily exercises the basic session calculus.
The benchmark repeatedly computes 4* and averages statistics.

bitcounter: We consider a CLL variant implementation of the process-based infinite precision bit counter from [75].
The benchmark repeatedly counts up to 212 and averages statistics. Interesting to see the allocation of precisely 12 + 1
session records of size 5, each representing one bit in the network.

ackermann: We recursively define the Ackermann function Ack() over the naturals represented with recursive types
(as in the example of Section 2.8). The benchmark repeatedly computes Ack(6,3) = 509 and averages runtime statistics.
Notice that, remarkably due to the implicit linear lazy computation strategy of the SAM, the required number of (three
slot) session records representing zero and sucessor natural number nodes (517) essentially corresponds to the function
output result.

primesieve: We consider a filter process network implementation of the sieve of Eratosthenes using the native
integers and operations available in our SAM prototype. The benchmark repeatedly computes the first 500 primes, and
averages runtime statistics. Again, interesting to see the allocation of no more than 500 + 2 session records, each one
essentially representing one filter for each prime stored in the pipeline.

cprimesieve: An example where the primesieve benchmark is spawned concurrently with a consumer that prints
the received primes. This example illustrates the performance penalty of concurrent synchronizations when compared
to the purely sequential formulation of the sieve.

A more detailed analysis of the many interesting issues related to an implementation of the SAM, in particular its
potential for efficient compilation, is of course outside the scope of this paper, however, the discussion in this section
already offers some perspective on the feasibility of the design to support the execution of realistic general higher-order

linear session-based code.

9 CONCLUDING REMARKS AND RELATED WORK

We have introduced the Linear Session Abstract Machine, or SAM, an abstract machine for executing session processes
typed by (classical) linear logic CLL, deriving a deterministic, sequential evaluation strategy, where exactly one process
is executing at any given point in time. In the SAM, session channels are implemented as single queues with a write
and a read endpoint, which are written to, and read by executing processes. Positive actions are non-blocking, giving
rise to a degree of asynchrony. However, processes in a session synchronise at polarity inversions, where they alternate
execution, according to a fixed co-routining strategy. Despite its specific strategy, the SAM semantics is sound wrt CLL
and satisfies the correctness properties of logic-based session type systems. We also present a conservative concurrent
extension of the SAM, allowing the degrees of concurrency to be modularly expressed at a fine grain, ranging from
fully sequential to fully concurrent execution. Indeed, a practical concern with the SAM design lies in providing a
principled foundation for an execution environment for multi-paradigm languages, combining concurrent, imperative
and functional programming. The overall SAM design as presented here may be uniformly extended to cover any
other polarised language constructs that conservatively extend the PaT paradigm, including affine types and shared
state [60, 68]. We have also produced a proof-of-concept implementation of the SAM, provided as an alternative backend
execution engine for our ongoing CLASS language development [18, 66-69].

A machine model provides evidence of the algorithmic feasibility of a programming language abstract semantics,
and illuminates its operational meaning from certain concrete semantic perspective. Since the seminal work of Landin
on the SECD [48], several machines to support the execution of programs for a given programming language have

been proposed. The SAM is then proposed herein in this same spirit of Cousineau, Curien and Mauny’s Categorical
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Abstract Machine for the call-by-value A-calculus [24], Lafont’s Linear Abstract Machine for the linear A-calculus [46],
and Krivine’s Machine for the call-by-name A-calculus [45] ; these works explored Curry-Howard correspondences to
propose provably correct solutions. In [25], Danvy developed a deconstruction of the SECD based on a sequence of
program transformations. The SAM is also derived from Curry-Howard correspondences for linear logic CLL [16, 83], and
we also rely on program conversions, via the intermediate buffered language CLLB, as a key proof technique. We believe
that the SAM is the first proposal of its kind to tackle the challenges of a process language, while building on several
deep properties of its type structure towards a principled design. Among those, focusing [4] and polarisation [37, 49, 60]
played an important role to achieve a deterministic sequential reduction strategy for session-based programming,
perhaps our main initial motivation. This allows the SAM to naturally and efficiently integrate the execution of
sequential and concurrent session behaviours, as presented in Section 7, and suggests effective compilation schemes
for mainstream virtual machines or compiler frameworks. Interestingly, in the expected encoding for the SAM of a
function object of type (®4;) — B as a process of type ("94;) ' B, the session record x{g, &, P)y that mediates caller
and callee essentially suggests a conventional stack frame where the queue g first stores the values passed and, after
polarity inversion, the single returned value. Here, the continuation P represents the “function ” return address, and
the environment & the “static link”. The SAM then also appears to conservatively extend familiar implementation
structures for functional languages within a broader context.

The adoption of session and linear types is clearly increasing in research (e.g., [3, 27, 29, 60, 63, 68, 75, 85]) and
general purpose languages (e.g., Haskell [9, 43], Rust [23, 47] Ocaml [40, 57], F# [56], Move [10], among many others),
which either require sophisticated encodings of linear typing via type-level computation or forego of some static
correctness properties for usability purposes. Such developments typically have as a main focus the realisation of
the session typing discipline (or of a particular refinement of such typing), with the underlying concurrent execution
model often offloaded to existing language infrastructure. We highlight the work [21], which studies the relationship
between synchronous session types and game semantics, which are fundamentally asynchronous. Their work proposes
an encoding of synchronous strategies into asynchronous strategies by so-called call-return protocols. While their
focus differs significantly from ours, the encoding via asynchrony is reminiscent of our own.

We further note the work [55] which develops a polarised variant of the I,uﬁ—calculus suitable for sequent calculi
like that of linear logic. While we draw upon similar inspirations in the design of the SAM, there are several key
distinctions: the work [55] presents Ap-calculi featuring values and substitution of terms for variables (potentially
deep within the term structure). Our system, being based on process calculus, features neither - there is no term
representing the outcome of a computation, since computation is the interactive behaviour of processes (cf. game
semantics); nor does computation rely on substitution in the same sense. Another significant distinction is that our work
materialises a heap-based abstract machine rather than a stack-based machine. Finally, our type and term structure is
not itself polarized. Instead, we draw inspiration from focusing insofar as we extract from focusing the insights that
drive execution in the SAM.

We also note that it is not uncommon for works based on the correspondence between linear logic and session
types [5, 6, 35] to adopt a semantics based on multiset rewriting [22] instead of the more traditional structural operational
semantics (SOS) style used in process algebra. However, the multiset rewriting approach directly mirrors the SOS style
and is immediately relatable to SOS [73]. This is in contrast with the semantics of the SAM whose correspondence with
CLL is non-trivial, as illustrated by our technical development in Section 4.

In future work, we plan to study the semantics of the SAM in terms of games along the lines of [21, 24, 46]. We

also intend to investigate the ways in which the evaluation strategy of the SAM can be leveraged to develop efficient
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compilation of fine-grained linear and session-based programming languages, and its relationship with effect handlers,
coroutines and delimited continuations. On the way we will also extend the SAM to support shareable mutable
state [65, 66, 68]. Linearity plays a key role in programming languages and environments for smart contracts in
distributed ledgers [27, 71] manipulating linear resources (assets); it would be interesting to investigate how linear

machines like the SAM would provide a basis for certified resource sensitive-computing [10, 86].
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10 APPENDIX
10.1 Proofs for Section 4.1: Preservation and Progress for CLLB.
LEMMA 4.6 (NON-FULL). For P # 0 the following rule is (1) admissible and (2) invertible in CLLB:
P+B Ap,x:AiT QB AQy:B;T Ti;Agrq:B>A B negative
cut {P |x:A [q] y:B| Q} +B Ap, Ag,Ag;T

For inversion (2), the derivations for P and Q are sub-derivations of the conclusion.

ProOOF. (Admissibility) By induction on the size of the queue q.

m (Case g = nil) We have A = B, so A is positive and we conclude by [TCutE].

m (Case g = ¢’@c) By Lemma 4.5 (1), there are E, Ay, Az such that Ay = A1, Ag, T;A1 + g : BrEandT;Az + c: EvA.
We consider each case for I'; As + ¢ : E»> A.

B (Subcasec=v') Wehave E=1and A=0and Ay =0andT;A; + ¢ : B 1. Hence P = 0, contradiction.

B (Subcase ¢ = clos(z,R)) Wehave E=T® Aand R+ A,z : T;T,and T; A1 + ¢’ : B>T®A.

By [T®], we derive send x(z.R); P B Az, Ap,x:T ® A;T.

By ih., we conclude cut {send x(z.R); P |[x:T ® A [¢’] y:B| O} +B Ap, Ag,Ag;T.

By [TCut®], we have cut {P |x:A [¢’ @c] y:B| Q} +B Ap, Ag, Ag:T where ¢’ @c = q.

m (Subcase ¢ = #l) We have E = @,c; E; and T; A1 F ¢’ : B> ®pc.Ep and Ay = 0. By [T®], we derive # x; P +B Ap, x :
®¢erEe; T. By ih., we conclude cut {#| x; P [X : ®perEe [q'] y:B| Q} +B Ap, Ag, Ag;T.

By [TCut®], cut {P [x:A [¢’@c] y:B| O} +B Ap, A, Ag;T where ¢’ @c = g.

m (Subcase ¢ = ty(T)) We have E = 3X.F and T;A; + ¢’ : B> 3X.Fand Ay = 0 and A = {T/X}F.

By [T3], we derive sendty x(T); P +B Ap,x : AX.F;T.

By ih., we conclude cut {sendty x(T); P |x : 3X.F [¢’] y:B| Q} +B Ap, Ag,Ag;T.

By [TCutd], cut {P [%:{T/X}F [¢’@c] y:B| Q} +B Ap, Ag,Ag;T where ¢’@c = g and {T/X}F = A.

m (Subcase ¢ = clos!()) We have E=!Cand A=0and Ay, =0 and T;A; + ¢ - Br1C. Hence P = 0, contradiction.

m (Subcase ¢ = step) We have E = pX.Fand T; A1 + ¢ - By puX.Fand Ay =0 and A = {uX.F/X}F.

By [Tp], we derive unfold,, x; P +B Ap,x : uX.F;T.

By ih., we conclude cut {unfold, x; P [x : uX.F [q'] y:B| Q} +B Ap, Ag,AgT.

By [TCuty], cut {P |x : {uX.F/X}F [¢’ @c] y:B| Q} +B Ap, A, Ag;T where ¢’@c = q and {uX .F/X}F = A.

(Inversion) By induction on the size of the queue g. In each case, we may verify that the proofs of the extracted
premises are always subderivations of the conclusion.

m (Case q = nil) Then the conclusion is derived by [TCutE], so A = B,P+B Ap,x:A;T and Q B Ag,y:B;T and A is
positive. So we also have I'; Ag + g : B> A where Ag = 0 and B is negative. Trivially, the proofs of premises are smaller
than the conclusion.

m (Case ¢ = ¢’ @c) We consider each case for c.

m (Subcase ¢ = V) If the conclusion is derived by [TCut1], contradiction since P = 0, not applicable.

m (Subcase ¢ = clos!(z, P)) If the conclusion is derived by [TCut!], contradiction since P = 0, not applicable.

m (Subcase ¢ = clos(z, R)) We have cut {P [%:A [¢’@clos(z,R)] y:B| Q} +B Ap, AQ,Ag;T derived by [TCut®] from
cut {send x(z.R);P [x : T® A [q'] y:B| Q} B Ap, Ag, Ag:T.

By i.h. inversion, we have send x(z.R); P B AR, Ap,x:T ® A;T, Q +B Ag,y:B;T, and T; Ag + q : B»>T ® A with
Ag = AZI, Ag and B negative. By [T®] inversion we have P F® Ap, x:A;T and R +B Ag, z:T;T.
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Since I'; Ag + clos(z,R) : T ® A» A. by Lemma 4.5 (2), we conclude I'; Ay + g : B» A.

m (Subcase ¢ = ty(U)) cut {P [%:A [¢@ty(U)] y:B| O} +B Ap, Ag, Ag;T derived by [TCut3]

from cut {sendty x(X); P |x : 3X.F [q’] y:B| Q} FB Ap, Ag,Ag;T where A = {T/X}F.

By i.h. inversion, we have sendty x(X); P vB Ap, x:3X.F;T, Q +B Ag,y:B;T,andT;Ay + ¢ : Bv3X.F with Ag = A’q
and B negative. By [T3] inversion we have P B Ap, x:A;T.

Since T';+ ty(T) : 3X.F» {T/X}F = A. by Lemma 4.5 (2), we conclude I'; Ag + ¢ : B» A

m (Subcase ¢ = step) cut {P |:A [¢’ @step] y:B| O} +B Ap, A, Ag;T derived by [TCuty]

from cut {unfold, x; P [x : pX.F [q'] y:B| Q} +B Ap, Ag,Ag;T where A = {uX.F/X}F.

By ih. inversion, we have unfold, x; P +B Ap,x:uX.F;T, Q +B Ag,y:B;T, and LAy + q: B» uX.F with Ag = AZI
and B negative. By [T3] inversion we have P B Ap, x:A;T. Since T; - step : uX.F > {uX.F/X}F = A. by Lemma 4.5 (2),
we conclude T'; Agtrgq: Br A.

The proof for the remaining cases follow the same pattern. O

LEmMA 4.7 (FuLr). The following rule is (1) admissible and (2) invertible in CLLB:

Q +B AQ,y:B;F [iAgkq: B-0 B negative
cut {0 |x:0 [q] y:B| Q} +B Ag,Ag;T

For (2), the derivation for Q is a sub-derivation of the conclusion. We also have q = ¢’ @V or g = ¢’ @clos!(z, R) for some q’.

Proor. We consider the case g = ¢’@v/. To verify admissibility, assume Q +® Ag,y:B;T, and I;Aq + ¢ @V : B> 0
and B negative. By Lemma 4.5 (1), [;Ag + ¢ : Br 1. By Lemma 4.6 (admissibility), we derive cut {close x [¥: 1 [¢'] y :
B| Q} +B Ap,Ag:T. By [TCut1], we have cut {0 |[x: 0 [¢’@v'] y: B| Q} +B Ag, Ag:T .

For inversion, assume cut {0 [x:0 [q] y:B| Q} +B Ag, Ag;T. By inversion [TCut1], we have cut {close x [x: 1 [¢'] y:
B| O} B Ag,Ag;T. By Lemma 4.6 (inversion), we have close x +B x:1;T, and 0 +B Ag,y:B;T, and T; Agtrq: Bs1,
and B negative. Since I'; Ag F ¢’ @V : B> 0 by Lemma 4.5 (2) we conclude.

The case q¢ = ¢’ @clos!(z, R) is similar. O
Type substitution principles are relevant for polymorphism and recursion in the proof of type preservation .

LEMMA 10.1 (TYPE SUBSTITUTION). The following hold
(1) (Instantiation) Let P l—,? A;T. Then {A/X}P Fia/xyy {A/XHAT).
(2) (Unfolding) Let rec Y (z,w); P [z, W] I—,? A,z : vX.A;T. Then, {rec Y(z,w); P/Y}P l—s‘ A z: {vX.A/X}A;T.

ProoF. (1) Proof by induction on the type derivations for P I-,? A;T. (2) We first prove the more general property (A):
Let rec Y(z,w); P [z, W] by Az vX.AT, Q I-s,, N;T’,andletn” =n’,Y(z,w) — A,z : X;T where n’ is any mapping
extending n for which Y, X are fresh. Then, {rec Y(z, w); P/Y}Q l-s, {vX.A/X}(A’;T”). Then, (2) results by [Tcorec]
inversion and considering 7’ = 5 and using (A) on Q +B A/;T” =P +B A, z: A;T. u]

THEOREM 4.8 (PRESERVATION). Let P FB A;T. We have
(1) IfP =B Q, then 0 +B A;T.
(2) IfP =B Q, then Q ¥B A;T.
PROOF. (1) We verify that conversion rules for structural congruence =B

EB, we rely on Lemma 4.6 or Lemma 4.7, to factor out queues in cuts. We illustrate with one case.

are type preserving. For any equation of
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m (Case [BM]) Assume cut {P[a: A [q] b: B| (Q || R)} +B Ap, Ag, Ao, AR;T where b € fn(Q). By Lemma 4.6
(inversion), P +8 a : A, Ap;Tand Q || R+B b : BAg,Ag:T and T;Aq - g : B> A.So Q +B b : B, Ag;T and R +B Ag;T.
By Lemma 4.6 (admissibility), cut {P [a: A [q] b : B| Q} B Ap, Ag, Ag;T. By [Tmix], cut {P |a: A [q] b: B[ Q} || R.

(2) We verify that conversion rules for reduction LA are type preserving.

m (Case [fwdp]) P = cut {Q’ |Z:A [q1] x:B| cut {fwd x y [§:B [g2] w:C| P’}} B A;T.

If g2 = nil, and then B = C, hence Q = cut {Q’ |z:A [q1] w:C| P’} +B A;T.

Otherwise gz # nil. Let F2 = cut {fwd x y [y:B [q2] w:C| P’} where F FB Ay, x:Band A = Ay, Ay. By Lemma 4.6
(inversion), fwd x y +B x: B, y:B, P"+ w:C,Ap;T and Ay = Ag,, Ap and T; Ag, Fq2: C»B.

Let F; = cut {Q’ [z:A [q1] x:B| F;} with F; +B A;T. By Lemma 4.6 (inversion), Q’ +B Ag,z:A;Tand T;Ag, +q1
Be Aand Ay = Ag,, Agr. By Lemma 4.5 (2), I Agy, Ag, + q2@q1 ¢ C» A. By Lemma 4.6 (admissibility) we conclude
cut {Q’ |z:A [q2@q1] w:C| P’} ¥B AT,

m (Case of [®]) Let cut {send x(z.P);Q |[x : A®C [q] y : B| R} B A;T. By Lemma 4.6 (inversion), we have
A = Ap, AR, Ag, Ag and send x(z.P); Q FB Ap,x:Aand R+ AR, y:BandT;Aqkq: BrA®C.

By inversion [T®], Ap = A/, A;J’ and Q +B A%, x:C;T and P +B A;,,z :A,T. We have T; A;, t clos(z,P) : A®C»C.

By Lemma 4.5 (2), T; Ag, A;, F q@clos(z, P) : B> C. By Lemma 4.6, cut {Q ¥ : C [q@clos(z, P)]| y : B| R} +B A;T.

m (Case [9]) Let cut {P |[x: A [q] y : B| recv y(w); Q} B A, with g = clos(z, R)@q’. We assume P # 0, the proof for
case P = 0 is similar and simpler, using Lemma 4.7 (inversion).

By Lemma 4.6 (inversion), P + Ap,x : A and recv y(w); Q +B Ag,y : Band T;Aq + clos(z,R)@q' : B> A, where
A = Ap,Ag, Ag. By [T’®] inversion we have B = T 9 C, for some T, C and Q B w:T, Ag,y: CandB=T®C.

By Lemma 4.5 (1), there are Aps Ap, = Ag such that I'; Ap, + clos(z,R) : T® C»C and T Ap, + q : Cvr A, and
R z:T,Ap;T. If ¢’ = nil we have cut {P [¥ : A [nil] y : C| (cut {R |21 : T [nil] w: T| Q}P} +B Ap,Ag, Ag. If
¢’ # nil, by [TCutE] we conclude cut {R |z; : Ty [nil] w: T1| Q}P +B Ap Ao,y ¢ C;T. By Lemma 4.6 (admissibility),
we have cut {P [x : A [¢'] y: C| (cut {R |z1 : T [nil] w: T| QD} +B Ap, Ag, Ag.

m (Case [J]) Let cut {sendty x(T);P |x : 3X.A [q] y : B| R} FB A;T. By Lemma 4.6 (inversion), we have
A = Ap, AR, Ag and sendty x(T);P+8 Ap,x : Aand R+ Ag,y : Band T;Aq F g : B> 3X.A.

By inversion [T3], P +B Ap,z : {T/X}A,T. We also have I';+ ty(T) : 3X.A» {T/X}A.

By Lemma 4.5 (2), T; Aq + q@ty(T) : B» {T/X}A. By Lemma 4.6, cut {P |x : {T/X}A [q@ty(T)]| y : B| R} +B A;T.

m (Case [V]) Let cut {P |x : A [q] y : B| recvty y(X);Q} B A;T, with ¢ = ty(T)@q’. We assume P # 0,
the case P = 0 is similar and simpler, using Lemma 4.7 (inversion). By Lemma 4.6 (inversion), P + Ap,x : A and
recvty y(X); Q +B Ag,y:BandT; A4+ ty(T)@q’ : B> A, where A = Ap, Ag, Ag. By [TV] inversion we have B = vX.C,
for some Cand Q +® Ap,y : Cand B = 3X.C. By Lemma 4.5 (1), I; + ty(T) : 3X.C>{T/X}CandT;Aq + ¢’ : {T/X}C>A.
If ¢ # nil, then by Lemma 10.1 (1), we have {T/X}Q +B Ag.y : {T/X}C, s0o Q B Ag,y : W By Lemma 4.6
(admissibility) we conclude cut {P X : A [¢'] y : {T/X}C| {T/X}Q}" +B A;T.If ¢’ = nil, we conclude cut {P |x :
Anil] y: {T/X}C| {T/X}Q}" +B A;T..

m (Case [p]) Let cut {unfold, x; P [x : uX.A [q] y : B| R} +B A;T. By Lemma 4.6 (inversion), we have A = Ap, Agq
and unfoldy, x; P +B Ap,x:AandR+ Ag,y:BandT;Agkq: §>,uX.A. By inversion [Ty], P B Ap,z : {uX.A/X}AT.
We also have T';+ step : uX.A» {uX.A/X}A. By Lemma 4.5 (2), I'; A¢ + g@step : B> {uX.A/X}A. By Lemma 4.6,
cut {P | : {uX.A/X}A [q@step]| y : B| R} B A;T.

m (Case [v]) Let cut {P [¥ : A [q] y : B| unfold, y;Q} +® A;T, with ¢ = step@q’. We assume P # 0, the

case P = 0 is similar and simpler, using Lemma 4.7 (inversion). By Lemma 4.6 (inversion), P + Ap,x : A;T and
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unfold, y; Q B Ag,y : B;T and T; Ag + step@q’ : B> A, where A = Ap,Ag, Ag. By [Tv] inversion B = vX.C
for some C and Q +B Ap,y - {vX.C/X}C and B = pX.C. By Lemma 4.5 (2), T;+ step : puX.C» {uX.C/X}C and
IiAq F ¢ {pX.C/X}C» A. Since m = {vX.C/X}C, by Lemma 4.6 (admissibility) in the case q # nil we
conclude cut {P [¥: A [¢'] y: {vX.C/X}C| Q} B A;T. The case ¢’ = nil follows from [TCutE]. O

LEMMA 10.2 (BARBS INVERSION). Let P +B A;T and P | .

(1) Ifx €T then P = call x(y); Q, otherwisex : A € A and
(2) P=fwdxy|*|Q,or
(3) IfA=1thenP =closex | *|R.
(4) IfA=1 thenP = waitx;Q | = | R.
(5) fA=B®C thenP =send x(y.Q);R | = | S.
(6) IfA=B’9 C thenP =recvx(y); Q| =|R.
(7) IfA=@®pecpEp thenP = #l x; Q.
(8) If A= &ypeLEr then P = case x {|#f € L:Q¢} | * | R.
(9) IfA='BthenP = !x(y);Q | *|R.
(10) IfA=?BthenP = ?x;Q | * | R.
(11) IfA =3X.C then P = sendty x(T); Q | = | R.
(12) IfA=VX.C then P = recvty x(X); Q | * | R.
(13) IfA = pX.C then P = unfold, x;Q [ * | R.
(14) IfA=vX.C then P = unfold, x;Q |« | Ror P = rec x(Y,2); Q [x,Z] | | R

Proor. Induction on the typing derivation of P + A;T. O

LEMMA 4.9 (LIVENESS). Let P +B A;T. IfP is live then either P | or P —B.

PRrooF. By induction on the derivation for P + A; T, and case analysis on the last typing rule. The result is immediate
for introductions and forwarder, since in all such cases P |x. We then consider the case of the cut rules.

m (Case of [TcutE]) we have P = cut {P; |[x : A [nil] y : A| P} +B A’, A;T, derived from P; ¥B A’,x : A;T and
Py +B A, E A:T, where A is positive. By the i.h. we conclude that Py — or P; |x,. So if P; —, then P — . Otherwise,
Pi lx, - Ifx1 # x then P |y, with x1 € A.

Otherwise x; = x. Since A is positive, by Lemma 10.2 (2,3,5,7,9,11,13), either P; = fwd x v | * | R (a), or we must have
P; = a(x); Q where a(x) is a positive action (b).

In case (a) if v ¢ A the both x; and v are bound in P by cuts, and P reduces by [fwdp]. Otherwise v € A and P2 |,
and P |,. In case (b) we must have P — by one of [1], [®], [@®], [3], [!], or [p], depending on the form of a(x).

m (Case of [TCut®]) We have P = cut {P; [ : A [q] y : B| P} +B A;T where g = ¢’@clos(z,R). By Lemma 4.6
(inversion), we have that P; FB x: A Ap,;T, to which the i.h. applies. Hence P; — or Py |y;.

If x # x1 then P; |x, and P |, . If x = x1 and A is a positive type, by the same reasoning as above for P; in case
[TCutE] we conclude that P |,, for some w or P — by some positive action by P; writing into the queue. Otherwise,
since the queue q is not empty and the process is well-typed, if P, can perform an action in y then it will reduce by
reading the value at the queue. We detail this reasoning.

Byih. P, — or P; | ;. If z # y then P | . Otherwise, P; | 4. By Lemma 4.6 (inversion), B is a negative type. Then by
Lemma 10.2 (2,4,6,8,10,12,14), either P, = fwd y v | * | R (a), or P, = a(y); Q where a(y) is a negative action (b).
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For case (a), if v is free in P, the P |,, otherwise P — by [fwdp], since both y, v are bound by cuts.

In case (b) we must have P — by one of [1], ['®], [&], [V], [?], or [v], [vv], depending on the form of a(y).

m (Case of [TCut®], [TCut3], [TCuty]) Similarly to the case [TCut®] above, we show that either P; |, with w # x
or Py — or P; |4 with w # y or P, — and then P |4, or P —. Otherwise P |x and Py | 4. If A is positive then P — by
Py adding a value to the queue. If A is negative then P — by P, reading a value from the queue.

m (Case of [TCut1]) Let P = cut {0 [¥ : @ [q] y : B| P2} +B A;T where g = r@+ derived from cut {close x [% :
1[r] y:B| Py} FB AT, Byih. P, — or P; | ;. If z # y then P |. Otherwise, P, | . By Lemma 4.7, either B = T9C(a)
orB=1(b).If P, =fwdyo|=|Q, then as for [TCutE] we conclude that P — or P |,. For (a), by Lemma 10.2 (6),
Py = recvy(w); Q' | # | Q”, and P — by [2]. For (b), by Lemma 10.2 (5), P, = wait y; Q" |« | Q”, and P — by [L].

(Case of [TCut!]) Let cut! {y.R |!x : A| Q} +B A;T derived fromR+B y: A;T and Q +B A;T, x : A. By i.h. either Q —
orQ |;.Ifz# xthenP — or P |,. If z = x then by Lemma 10.2 Q = call x(y); Q | * | R and P — by [call]. O

10.2 Proofs of Section 4.2: Correspondence between CLL and CLLB.

We illustrate reduction commutations used in the proofs, those for pairs —B? /—B" are checked similarly.
LEMMA 10.3. Commutation (pos-neg-promote):

cut {send x(z.R); P |X [clos(u, S)@q] y| recv y(w); 0} —B?

cut {P [x [clos(u, S)@g@clos(z, R)] y| recv y(w); Q}—B" cut {P ¥ [g@clos(z,R)] y| cut {S [u[]w| Q}}
cut {send x(z.R); P |¥ [clos(u, S)@q] y| recv y(w); Q}—B"

cut {send x(z.R); P |% [q] y| cut {S [u[]w| Q}}—B? cut {P |x [g@clos(z, R)] y| cut {S [u[]w| O}}

LEMMA 10.4. Commutation (pos-neg-seq-commute):

Ei[cut {X |y [q1] @l send a(z.R); recv b(w); 0}]—B?

Ez[cut {Y [X [clos(u, $)@qz] b recv b(w); Q}—B" Es[cut {Y [% [ga] b| cut {S |u[]w| Q}}]
Ei[cut {X |y [q1] a| send a(z.R);recv b(w); Q}] =

Fylcut {W |x [clos(u, S)@qz2] b| recv b(w); send a(z.R); Q}]—bBn"

F3[cut {Z |y [q1] @f cut {S [u[]w] send a(z.R); Q}}—BP Es[cut {Y [X [gz] b| cut {S [u[]w| Q}}]

LEmMA 10.5. Commutation (fwd-neg-comm):

El[cut {P |z [q1] x| fwd x y |y [clos(u, S)@q2] b| recv b(w);Q}]—>B“
E[cut {P |z [clos(u, S)@q2@q1] b| recv b(w);Q}]—>B" Elcut {P |z [q2@q1] | cut {S |u[]w| Q}}]

E[cut {P |z [q1] x| fwd x y [§ [clos(u, S)@q2] b| recv b(w); Q}]—B"
E[cut {P |z [q1] x| fwd x y [§ [g2] b| cut {S [u[Jw| Q}}] =54 E[cut {P 2 [q2@q1] b| cut {S |u[]w| Q}}]
We recall the following notations.
(1) Write P—B? Q for P—BQ if this reduction is positive (uses [1], [®], [®], ['], [3], or [x]).
(2) Write P—B" O for P—B( if this reduction is negative or [call] (uses [L], ['9], [&], [?], [call], [V], [v] or [vp]).
(3) Write P—B@ O for P—BQ if this reduction is by [fwdp].
(4) Write pSBa Q for P—Ba Q if this [fwdp] reduction acts on empty cuts.
(5) Write P—B2P O for P—BQ if this reduction is positive or a forwarder.
(6) Write P —B" O for a positive action on a buffered cut with empty queue imediately followed by a matching

negative action on the very same cut.
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LEmMMA 4.13 (CoMMUTATIONS). The following commutation properties of reductions hold.
(1) Let Py—BP S—B" py. Then either (a) Py —B" Py, or (b) Py—B" §'—BP Py for some S’.
(2) LetPy—B% §—B" py Then py—B" ' B2 p, for some §.
(3) Let Py—B2P 5—B" p) Then either (a) Py —B" Py, or (b) P—B" 5’ —B2p p, for some S’.
(4) Let P,—Bap N=Bag _Br P,. Then either (a) PliB“ N or (b) there is S such that P; —B" §’=8ap p,.

Proor. (1)Either (a) the reductions are in the same cut, or (b) the reductions are in different cuts. For (a), if reductions
match we conclude. Otherwise they commute (by Lemma 10.3 ) so P;—B" §—B? P, for some S. For (b), if reductions
are independent (different threads), commute, and we conclude. If the reductions are dependent (same thread), they
commute (by Lemma 10.4) and we conclude.

(2) We consider two cases: either (a) the reductions are in the same cut, or (b) the reductions are in different cuts.
For (a), the reductions commute (by Lemma 10.5), so we have P— 8" §—82 O for some S. For (b), the reductions are
independent and commute.

(3) By (1) and (2).

(4) Assume P;—PBP N. Since the reductions in S —B" P, must act on the same cut with an initially empty queue, and
all reductions N=>B4 § are on empty cuts, the reduction P;—B? N must act on a different cut of all those involved and
thus commutes with N=Ba § —Br P,, and we conclude (b). If P;—B@ S then either this redex generates one empty

€
cut, so PliB“ S, and we conclude (a), or, as in case (b), it must be independent of N= Ba g _,Br P,. O

LEMMA 4.11 (SIMULATION OF CLL BY CLLB). Let P + 0;0. IfP — Q then PT =B Of.

Proor. Each cut reduction of CLL is simulated by two reduction steps of CLLB in sequence: [®%] by [®] fol-
lowed by [’®]; [1L] by [1] followed by [L]; [!?] by [!] followed by [?]. In a closed CLL process a [fwd] reduction
has the form cut {Q |x : Al fwdxy |y : Al P} — cut {Q |x : A| {x/y}P}, which, for A+, reduces by [fwdB] as
cut {Q [%:A [nil] zA| fwd z w [w [nil] y| P} =4 cut {Q |¥:A [nil] y:A| P}. o

LEMMA 4.14 (PosTPONING). Let P B 0;0. IfP=82P —B" O then either

(1) P—B" R and R=82P Q for some R, or;
2) p=Ba _Br R and R=Bap Q for some R.

ProOF. By induction on P(—BaP )*p’.

(Base) We have P = P’—B" O, hence (1).

(Inductive) Case P—Bap p'=Bap _,Bn ¢ 16t (r0) p—Bap p/,

By ih. for P’ there is R’ so that (c1) P’—B8" R” and R"=82P Q, or (c2) p'SBa _Br g/ and R'=Bap 0.

Case (c1). We have P—BaP p’ B" R” and R"=B3 (. By Lemma 4.13 (3) on P—B2P P’ B" R’ cither P —B" R/
and we conclude (2) (R = R’) or there is R such that P—B" R—B2P R’ and we conclude (1).

Case (c2). We have P— Bap p'=Ba _Br R/ and R/=Bap Q. By Lemma 4.13 (4) either (a) P5Ba p’ or (b) P —Br
R”—BaP R’ Tn case (a) P=Ba _Br R’ we conclude (2) (R = R’), in case (b) we get (2) as well (with p=Ba empty). O

THEOREM 4.15 (OPERATIONAL CORRESPONDENCE CLL-CLLB). Let P +cr 0;0.
(1) IfP = R then P' =B RT,
(2) IfPT =B Q then there is R such that P = R and RT=82p Q.
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ProOF. (1) Iterating Lemma 4.11.

(2) We first prove (A): if PT=82P B O then there is R such that P = R and RT=82P Q. Assume PT=Bap Bn o
By Lemma 4.14 (2) we have pi=Ba _Br R/ and R’=Bap Q for some R’ ((1) cannot apply, since in PT all queues
are empty). Then there is P* such that P = P* by [fwd] and P* — R’, where P*' = R".So P = R’ and R’ = R'
for some R since all cuts are empty in R’. Since RT=52P 0 we conclude (A). Now, we note that P =8 Q implies

Pf(=Bap Bny*—Bap 5 We then iterate (A) on each =82P —B" reduction sub-sequence to conclude (2). O

10.3 Proofs of Section 5: The Linear SAM and its Correctness

In the proof of Lemma 5.5 we map each SAM transition into a reduction of the CLLB process P encoded by the machine

configuration. Lemma 10.6 in useful to identify the action redex A via a context decomposition P =B E[F[A]].

LEMMA 10.6 (ENCODING TO CONTEXT). Let P +g O and P B (Q,H).

Then P =g E[Q], where E[O] = Fy, [F,[... [F,[O]]...]1, H = Sx,y, - -  Sx,y,» and
foreveryi, Fz, is a one-hole cut context binding z; and S, y, a session record such that either:
(@) zi = x; and F; = cut {0 [x;:A [q] yi:B| R} and Sx,y, = X;:A{q, R(y;))y;:B in write-mode, or
(b) zi = y; and F; = cut {R [x;:A [q] y;:B| O} and Sy, y, = Xi:A{q, R(x;))y;:B in read-mode.

encsk
Proor. By inductionon P = (Q, H), we consider at each step one of the two cases of Definition 5.3. O

LEMMA 5.5 (SAM-CLLB STEP SAFETY). Let P B 0 and enc(P) a ready SAM configuration. If enc(P) is live then (1)
there is C ready such that enc(P) = C and (2) there is Q such that P —B Q and Q Be c'g* enc(Q).

ProoF. Assume enc(P) = (A, H) live. We consider each process construct A.

m (Case of A = fwd x y) Wlog, assume that x:B is negative, so y:B is positive. By Lemma 10.6, there are contexts
E, Fy, Fy such that P =B E[Fx[Fy[fwd x y]]]. Hence, x and y must be endpoints of different session records, arising
from the cuts of Fy and Fy, where P =B E[cut {P; |ZA [q1] x:B]| cut {fwd x y [:B [g2] w:C]| P;}}] and H =
H'[z{(q1, U(z))x:B] [y:B{q2, V(w))w] with y (—) w in write-mode (B+ and step ¢ gz2) and z (—) x in read-mode (g; step-
terminated, or not A+ and step ¢ g1). Thus we have (1) enc(P) = (fwd x y, H' [2:A{q1, P1)x:B] [y:B{g2, P2)w:C]) = C
by [Sfwd] where C = (P, H'[2:A{q2@q1, P1)w:C]). C is ready with z(~) w in read-mode. Then (2) P -8 0 =
E[cut {P1 [Z:A [q2@q1] w:C]| P2}] by [fwd] , and O &5 C where C & enc(Q) by Lemma 5.4 (2).

m (Case of A = close x) By Lemma 10.6, there are contexts G, Fy such that P =B E[F.[close x]] and P =B
E[cut {close x |x:1 [q] y:B]| R(y)}], with H = H[x:1{g, R(y))y:B] and x (=) y in write-mode.

Then enc(P) & (R(y), H' [x:0{(q@V/, 0)y:B]) = C by [S1], and C is ready with x (—) y in read-mode. Then (2)
P -8 0 = E[cut {0 [%:0 [g@] y:B]| R(y)}] by [1] and O B C where C & enc(Q) by Lemma 5.4 (2).

m (Case of A = wait y;R) By Lemma 10.6, there are contexts E, Fy such that pPB = E[Fy[wait y;R]] and P =B
E[cut {P |x:A [q] y:L]| wait y;R}] and H = H' [x:A{q, P)y: L] with the session record in read-mode. Since A - g : 1> A,
we must have ¢ = v and A = 0 and P = 0. Thus, H = H' [x:0{g, 0)y:L]. Then (1) enc(P) = C = (R,H’), with C ready.
Hence (2) P —B Q = E[R]. We have Q B e Cg* enc(Q) as above.

m (Case of A = send x(2.R(2)); U(x)) By Lemma 10.6, for E, Fx we have P =B E[F,[send x(z.R(2)); U(x)]] =B
E[cut {send x(z.R(2)); U(x) |x:T ® A [q] y:B]| S(y)}] and H = H' [x:T ® A{q, S(y))y:B] with x (=) y in write-mode.
Then, if A+ (a), enc(P) = C1 = (U(x),H’[x:A(g@clos(z, R(z)),S(y))y:B]) by [S®]; if A— (b), enc(P) = C; =
(S(y), H' [x:A{g@clos(z, R(z)), U(x))y:B]) by [S®]. Notice that C; is ready (x (—) y in write-mode), Cy is ready (x (—) y
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in read-mode). For (a), P =B Q = E[cut {U(x) |[%:A+ [g@clos(z, R(2))] y:B]| S(y)}] by [®], and O ay Ci clu:t; enc(Q);
for (b), P —B Q = E[cut {U(x) [F:A— [g@clos(z R(2))] y:B| S(y)}] by [®], and O =" C, " enc(Q).

m (Case of A = recv y(w:A); U(y, w)) By Lemma 10.6, P =B E[Fy[recv y(w:A); U(y, w)]] =B

E[cut {S(x) |x:C [q] y:A 9 D]| recv y(w:A); U(y, w)}], for some contexts E, Fy.Thus, H = H' [x:C{(q, S(x))y:A 9 D]
with x (=) y in read-mode. Since A+ g : A ® D> C, we have q = clos(z:A,R(z))@q’ (A F nil : A ® D> C is not derivable,
because then not +C would hold by the read-mode condition). We prove the statement for A+, the case A— is similar.

We have (1) enc(P) = C where either (a) C = C; = (R(z), H [x:C{(¢’, S(x))y:D][z:A{nil, U(y, w))w:A]) (if ¢’ # nil),
or (b) C = Cy = (R(z), H’ [y:D{nil, S (x))x:C] [z:A{nil, U(y, w))w:A]) (if ¢’ = nil). Notice that in (a) C; is ready (x (=) y
in read-mode and z (—) w in write-mode); in (b) C; is ready, (y (—) x in write-mode and z (—) w in write-mode). For
(2), in (a) then P —B Q = E[ cut {S(x) [%:C [q] y:D| cut {R(2) [Z:A [nil] w:A| U(y, w)}}] by 9], and 0 B> &>
Ci cg* eng(Q); in (b) then P —B O = E[ cut {S(x) |x:C [nil] 3:D| cut {R(2) [z:A [nil] w:A| U(y, w)}}] We have
Q B e Co Clét)* enq(Q).

m (Case of A = # x; R(x)) By Lemma 10.6, P =B E[#] x;R(x)] =B E[Fy[cut {# x;R(x) |x:®,crAr [g] y:Bl| S(y)}]1]
for E, Fy, and H = H’ [x:®;c1Ar{q, S(y))y:B], with x (—) y in write-mode. So (1) enc(P) = C where (a) C = C; =
(R(x), H' [x:A4{q@#l,S(y))y:B]) if Ay+and C = C2 = (S(y), H' [x:A4{q@#], R(x))y:B]) if Ay—, with C; ready in (a)
or (b). For (2), let P —B Q = E[cut {R(x) [F:As [g@#]] y:B]| S(y)}] by [®], and 0 B Ci B eng(Q) in (a) or (b).

m (Case of A = case y {|#¢ € L:P¢(y)}) Similar to A = recv y(w:A); U(y, w).

m (Case of A = sendty x(T); R(x)) By Lemma 10.6, there are E, Fy such that P =B E[F,[sendty x(T); R(x)]] =B
E[cut {sendty x(T); R |x:3X.A [q] y:B]| S(y)}] and H = H' [x:3X.A{q, S(y))y:B]. So (1) enc(P) = C by [S3] where
C = (R(x), H[x:{T/X}A(q@ty(T), S(y))y:B)™". Then (2) P =B Q = E[cut {R(x) [X:{T/X}A [q@ty(T)] y:B]| S(y)}]
by [3] and Q ctg* C for the two cases of (...)"").

m (Case of A = recvty y(X);R(y)) By Lemma 10.6, for some E, Fy, we have P =B E[Fy[recvty y(X); R(y)]] =B
E[cut {S(x) |x:C [q] y:¥X.D]| recvty y(X); R(y)}] and H = H’ [x:C{g, S(x))y:YX.D] with x (=) y in read-mode. Since
A+ q:3X.D»C, we have g = ty(T)@q’ for some T,¢q’, so H = H' [x:C{ty(T)@q’, S(x))y:¥X.D].

Then enc(P) = C (1) where C = ({T/X}R(y), H[(x:A{q, S(x))y:{T/X}B)"™]) with C ready.

For (2), we have P —B Q with Q = E[cut {S(x) [x:A [q] y:{T/X}B]| {T/X}R(y)}]

or Q = E[cut {S(x) |x:A [nil] y:{T/X}B]| {T/X}R(y)}]. Asin [S’®], in both cases we conclude Q B c clu:t; enqg(Q).

m (Case of A = unfold, x;R(x)) By Lemma 10.6, for contexts E, Fy we have P =B E[Fx[unfold, x;R(x)]] =B
E[cut {unfold, x; R(x) [x:uX.A [q] y:B]| S(y)}] and H = H' [x:1X.A{q, R(x))y:B], with x (-) y in write-mode.

Thus (1) enc(P) = C = (S(y), H'[x : {uX.A/X}A{q@step,R(x))y : B]) by [Sy]. We then have (2) P -8B 0 =
E[cut {R(x) [% : {1X.A/X}A [q@step] y : B]| S(1)}] by [1] and @ B € 5" eng(Q).

m (Case of A = rec Y(u,w);Q [y,Z]) Abbreviate R(y) = rec Y(u,w);Q [y,Z]. By Lemma 10.6, there are E, Fy
such that P =B E[R(y)] =B E[Fc[cut {P(x) |[:A [q] y:vX.B]| R(y)}]] and H = H’[x:A{q, P(x))y:vX.B] with
x(=)y in read-mode. Since A + q : puX.B> A, we must have g = step@q’ and g step-terminated hence ¢ =
step, do H' = H[x:A(step, P(x))y:vX.B]. We consider the case A+. Then (1) enc(P) = (P(x),H”)? = C where
H” = H[x:A(nil, U(y))y:{vX.B/X}B] and U(y) = {(rec Y(u,); 0)/Y}{y,Z/u, w}Q. We also have (2) P —B 0 =

encs cut*

E[cut {P(x) [x:A [nil] y:{T/X}B]| U(y)}] and Q &= C = enq(Q). The case for A— is similar. O

THEOREM 5.6 (SOUNDNESS WRT CLLB). Let P +B 0 and enc(P) a ready SAM configuration. If enc(P) 5 C then there

encs

is O such thatP =B Q andQ0 5 C.
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Proor. By induction on the number n of SAM transition steps in enc(P) 5 C.
0
Base case (n = 0): Trivial, enc(P) = enc(P) and P = Q. Inductive case (n = 1 + n’). Hence enc(P) is live and by
/ t
Lemma 5.5, there is D ready such that enc(P) = D = C, and P’ such that P —B P’ and P’ oS enc(P’). By

n’ enc _ cutx m cut m’
determinism of = we must have either (a) D = C S enc(P’) or (b) D N enc(P’) > C,withn’ =m+m’.In

(a) we conclude by letting Q = P’. For (b) by i.h., there is Q such that P’ =8 Q and 0 " C. Therefore, we conclude

enc*

P=BoandQ = C. o

10.4 Proofs for Section 6: The Linear SAM for full CLL

We adapt prior definitions to deal with environments in configurations and closures, and formulate a revised version of

the decomposition Lemma 10.6.

LEmMMA 10.7 (ENCODING TO CONTEXT - FULL SAM). Let P +g 0; 0 and P B (&,0,H).

Then P =g E[Q], and E[O] = F1[F2[... [Fx[O]] .. .]11], for some E and

for every i, F; is a one-hole cut context and S,,p,, € H a session record such that either:

(a) F; = cut {0 [x;:A [q] yi:B| R} and E(x;) = a; and Sq,, = a;:A{—, —, R)b;:B in write-mode, or
(b) Fi = cut {R [x:A [q] y;i:B| O} and E(y;) = bi and Sy, = a;:A{—, —, R)b;:B in read-mode.
(c)F; = cut! {y.R |'x; : Al 0}] and E(x;) = clos!(y : A, —, R).

encesx
Proor. By inductionon P = (&, Q, H), we consider at each step one of the three cases of Definition 6.3. O

LEMMA 6.5 (SAM-CLLB &-STEP SAFETY). Let P +-B 0 and ence(P) a ready SAM configuration. If ence(P) is live then

encex cutsx

(1) there is C ready such that ence(P) = C and (2) there is Q such thatP —B8 Q andQ = C = enc(Q).

Proor. Assume ence(P) live. We consider each case for A, focusing here on the new cases for the exponentials. We
illustrate the linear fragment with a detailed analysis of ® and .

m (Case of [SCut!]) Not applicable, since [SCut!] is absorbed in ence(P).

m (Case of A = send x(z.R(2)); U(x)) By Lemma 10.7, for some E, Fy we have P =B E[F, [send x(z.R(2)); U(x)]] and
Fe[O] = cut {0 [%:T®A [q] y:B]| S(y)}. Thus P 55 (G, Fy[send x(2.R(2));U(x), H') B ence(P) = (&, A, H),
where & ~ 1 Gla/x}, F =5(y) G{b/y}. qe ~ qg and H = H' [a:T ® A{qe, ¥, S(y))b:B] with a (=) b in write-mode.

Then, if A+ (a), ence(P) = C; = (8,U(x), H' [a:A{ge@clos(z, &, R(z)), F, S(y))b:B]) by [S®]; if A— (b), ence(P) =
Cy = (F,S(y), H [a:A{ge@clos(z, E, R(z)), &, U(x))b:B]) by [S®]. Notice that C; is ready (a (=) b in write-mode), Cy
is ready (a (—) b in read-mode). Hence we have (1). We now show (2).

For (a), P —B Q = E[cut {U(x) [%:A+ [q@clos(z,R(z))] y:B]| S(y)}] by [®].

Let Fx[O ] = cut {O |[x:A — [q] y:B]| S(y)}. We have Q = (G, Fx[U(x)],H") oy C1, since & ~,p(;) G
and thus qg@clos(z, E,R(z)) = (q@clos(z,R(z)))g. Then C; Clu:t; enc(Q) by Lemma 6.4(2). For (b), P —B 0 =
E[cut {U(x) [x:A— [gq@clos(z,R(2))] y:B]| S(y)}] by [®]. Let F;/[D] = cut {U(x) [x:A - [q] y:B]| O}. We have

encesx

0 = (Q,F;/[S(y)],H’) hy Gy, since & =, p(;) G and thus g9 @clos(z,&,R(2)) ~ (q@clos(z,R(z)))9. Then

C Clu:t>* ence(Q) by Lemma 6.4(2).

m (Case of A = recv y(w:A); U(y, w)) By Lemma 10.7, for contexts E, Fy we have P =B E[Fy[recv y(w:A); U(y, w)]]
and Fy[O] = cut {S(x) [®C [q] y:A®D]| O}). Thus P = (G, Fylrecv y(wiA);U(y, w)],H') & ence(P) =
(F, A H), E=g(\Gla/x}, F ~a G{b/y}, qe = q9 and H = H' [a:C{ge, &, S(x))b:A ® D] with a (—) b in read-mode.
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Since T;A F g : A® D » C, we have q = clos(z:A, R(z))@¢’. Hence ge ~ clos(z:A, G, R(z)) @qe’, where ge’ ~ ¢’
and G’ ~; p(;) G- Wlog, assume G’ = F, since y ¢ fn(R(z)). We prove (1,2) for the case (A+ and g’ # nil), other
cases are like in the proof of Lemma 5.5. For (1) we have ence(P) = C by [S%®] where C = (F{c/z},R(z),H"”),
where H”” = H' [a:C{ge’, &, S(x))b:D] and H'" = H" [c:A(nil, F{d/w}, U (y, w))d:A]. Notice that C is ready (a (~) b in
read-mode and ¢ (—) d in write-mode).

For (2), let P =B 0 = E[ cut {S(x) |%:C [¢’] y:D| C(y)}] by ['®], where C(y) = cut {R(2) |z:A [nil] w:A| U(y, w)}.
Then Q 55" (G, cut {S(x) [:C [¢'] y:D| C(y)}, H') B (F, Cy), H") B (F{c/2},R(z), H") & ence(Q).

m (Case of A = !x(2); R(z)) By Lemma 10.7, P =B E[F,['x(2);R(2)]] and Fy[a ] = cut {B [%:!A [q] y:B]| S(v)},
for some contexts E, Fy. Thus P =T (G, Fx[!'x(2); R(2)],H") Y ence(P) = (6, A,H), where & ~g() G{a/x},
F ~z G{b/y}, ge ~ q9, and H = H' [a:!A{ge, F, S(y))b:B] with a (-} b in write-mode.

By [S!], ence(P) = C = (F,S(y), H [a:0{ge@clos!(z, E,R(2)), 0, 0)b:B]). C is ready (a (—) b in read-mode), so (1).
For (2), let F;[D] = cut {0 [%:0 [q@clos!(z, R(z))] y:B]| O} and P =B Q = E[F!’l [S(y)]] by [®].

Then Q =T (G, F’y[S(y)],H’) iy C, since G %, p(;) € and ge@clos!(z, &,R(2)) = (g@clos(z,R(z)))9. Then
C clu:t>* ence(Q) by Lemma 6.4(2).

m (Case of A = ?y; Q) By Lemma 10.7, for E, Fy, we have P =B E[Fy[?y; Q]] and Fy[O] = cut {S(x) |x:C [q] y:?B]| O}
Thus P 5 (G, Fyl?y; Q1. H') iy ence(P) = (F,A,H), where H = H’[a:C{qe, &, S(x))b:?B] with a(-)b in
read-mode, & ~5(x) Gla/x}, ¥ ~a G{b/y} and qe » q9. Since T;+ q : B> A, we have g = clos!(z,R(z)) and
A = 0and S(x) = 0, and H = H'[x:0(clos!(z, G, R(2)), 0)y:?B] where G’ ~,p(;) G. Wlog, assume G’ = F,
since y ¢ fn(R(2)). For (1), ence(P) = C = (F{clos!(z, F,R(2))/y},Q,H’), with C ready. For (2), let P —B
Q = E[cut! {zR |yl Q}] by [?]. We have Q 5 (G, cut! {z.R |ly| QL H') & C, since ¥ ~,p(z) G. and
F{clos!(z, F,R(z2))/y} = G{clos!(z, F,R(z))/y}. We conclude C Clét)* ence(Q) by Lemma 6.4(2).

m (Case of A = call y(w); U(w)) By Lemma 10.7, for contexts E, Fy, E’ we have P =B E[Fy[E'[call y(w); U(w)]]] and
Fy[O] = cut! {z.R |'y : A| O} and P = ence(P) = (G, A, H), where G(y) = clos!(z, ', R(2)) for some G’ =, p(,) G-
We have ence(P) = C = (8, U(w), H[a:A(nil, G’ {b/z}, R(z))b:A])P by [Scall], where & = G{a/w}.

We branch on A polarity. If A+, then C = (&, U(w), H[a:A(nil, G’ {b/z},R(2))b:A]). C is ready, with a (-) b in
write-mode, hence (1). Let P —B 0 = E[Fy[E[cut {U(w) [w:A[nil]z:A| R(z)}]] by [call].

Then Q 55 (G, cut {U(w) [WA[nil]zA| R}, H') B C, since §/{b/z} ~g(z) G{b/2}. For (2),C 5 ence(Q) by
Lemma 6.4(2).

If A—, then ence(P) = C = (G’ {b/z}, R(2), H[b:A(nil, &, U(w))a:A]). Then (1) C is ready, with b () a in write-mode.
LetP -8B Q= E[Fy[E'[cut {R(2) |z:A [nil] w:A| U(w)}]] by [call].

Then Q =T (G, cut {U(w) |w:A [nil] z:A| R(2)}, H') B C, since G'{b/z} ~g(;) G{b/z}. For (2),C Cg* ence(Q)
by Lemma 6.4(2). O

10.5 Proofs of Section 7: Concurrent Semantics

We present the proof of the main soundness and progress Lemma 7.4 for the Concurrent Linear SAM, from which
Theorems 7.5 and 7.6 easily follow. First we define the encoding of CLLB processes with annotated concurrent cuts.

Such annotation is silent for any purpose other than the concurrent execution strategy in the CSAM. For simplicity, we
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extend the basic Linear SAM of Section 5 (no exponentials), but with concurrent mix and cut constructs.

({0} w M, H) B (M, H) [Co]
({Pru M. H) B ({0} w M H) if enc(P,H) & (Q,H’) [CTht]
(cpar {P || Q) ¥ M, H) 5" ({P,Q} ¥ M, H) [CMix]
—_ encc

(ccut {P [x : Alqly : B| Q} w M, H) = ({P,Q} w M, H[x(q) y]) [CCut]

LEMMA 10.8 (ENCODING TO CONTEXT - CONCURRENT SAM). Let P +g 0 and P ey (A H).

Then, for every A; € A there isEo[O] = F1[F2[... [Fn[O]] .. 111 such that P = E[A;] and

for every i, F; is a one-hole cut context and Sy, y, € H a session record such that either:

(a) F; = cut {0 |x;:A [q] yi:B| R} and Sy, y, = x;:A(q, R)y;:B in write-mode, or

(b) F; = cut {R [x;:A [q] yi:B| O} and Sx,y; = Xi:A(q, R)y;:B in read-mode.

(c) Fi = ccut {0 [x;:A [q] yi:B| R} and Sy, = xi:A{q) y;:B.

(d) Fi = ccut {R [x;:A [q] y;:B| O} and Sx,y, = xi:A{(q) y;:B.

(e) F; = cpar {O0 || R}.

Proor. By induction on P ey (Q, H), we consider at each step one of the cases in Definition 7.2. O

The proof follows the structure leading to Theorem 4.10, where the liveness Lemma is now based on a notion of
observation (cf. Figure 12), adapted to the present setting of concurrent actions on concurrent session records. Intuitively,

P |1 holds if process P is about to execute an action on a concurrent session endpoint.
Definition 10.9. We denote by P |1 the assertion that P |, where either x (q)y € H or y (¢) x € H.

LEMMA 10.10 (LIVENESs-s). Let P +B 0 and P Ep= (A, H) where D ready. Then either

encesx cuts

(1) There is C ready such that D = C and Q such thatP —8 Q and 0 = C B ence(Q), or
(2) Forall A; € A, we have A; lf/.

ProoF. Ifall A; € A are endpoints of concurrent session records in H, we conclude (2). Otherwise, A = A(x) WA’ for
some action A(x) where the subject x the endpoint of a sequential session record. By Lemma 10.8 there are contexts E, Fy
such that P =B E[F,[A(x)]]. Then, as for Lemma 5.5 for (A, H) = C, we prove that (A(x)wA’ H) = C = (RA", H),

enccx cuts

and Fx[A(x)] —p R for some R, so P —g E[R] = Q and encc(Q) = C = encc(Q), concluding (1). O

NCC*

LemMA 10.11 (Liveness). Let P + O and P e (N, H) o= (A, H’) where D ready. Then either

encesx cuts

(1) There is C ready such that D = C and Q such thatP —8 Q and 0 = C B ence(Q), or
(2) ForallP € N, there is A; € AL, such that A; ,Lff/ with x € fn(P).

enccx

Proor. By induction on (N,H) = 9D.By Lemma 7.3 (1), both (N, H) and D are ready.

m (Base Case) We have (N, H) = (A, H). The conclusion follows from Lemma 10.10, since N = A.

m (Case of [C0]) By the i.h..

m (Case of [CThr]) We have C = (N, H) B ({0} ¥ M H') ‘& (A H") = C’, where N = {R} ¥ M and
(R, H) = (Q, H’) where R = F[Q] for a basic (non-concurrent) cut context F. By i.h., we have either ((1)) D = C or
((2)) for all for all S € {Q} W M, thereis A € A5, A i?/ with z € fn(S). In case ((1)) we conclude (1). In case ((2))
since F[] is a non-concurrent cut, it does not bind z, hence if A € AL, A 1{;" with z € fn(Q) then A € AR, A Lgl with

z € fn(R). Hence we conclude (2).
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m (Case of [CMix]) We have C = (N, H) B ({Up,Us} W M H) 55 (A H') = C’, where N = U W M, with
U = cpar {U; || Us}. By ih, either (1)) C’ = C or ((2)) for all S € {Uy, Us} W M, there is A € A5, where A llzq/ for
z € fn(S). For ((1)) we conclude (1). In case ((2)), (2) also immediately follows from the i.h., since, e.g., from A € AY,
A llzq/ with z € fn(Uy) we conclude A € AR, A lf/ with z € fn(U).

m (Case of [CCut]) We have C = (N, H) 5 ({Up, Us} ¥ M, H[x (q) y]) &> (A H') = C’, where N = U & M,
with U = ccut {U |x : A[q]y : B| Uz}. By i.h,, either ((1)) C’ &= C or ((2)) for all S € {Uy, Uy} W M, there is A € AS,
where A lﬁl' for z € fn(S). For ((1)) we conclude (1).

Otherwise, we assume ((2)) and consider the cases A+ and not A+.

(Case A positive) Then x € fn(Uy), so Uy # 0. Then (i.h.) there is A € AV with A 1{?’. If z # x then A l?/ with
A € AY hence ((2)). If z = x, then A(x) must be a positive action, so we have (4, H') = (P’,H”) = C, where x {q) y
in H' mutates to x (q@v) y € H” in H”, by one of the (forwarding or positive) transition rules for the concurrent SAM
(Figure 22). By Lemma 10.8 there are contexts E, Fx such that P =B E[F,[A(x)]]. As in Lemma 5.5 there is R such that
Fx[A(x)] —B R, so P —p E[R] = Q where encc(Q) ‘B Ciu=t>* encc(Q). We thus conclude ((1)).

(Case A not positive) Then type A is either negative or A = (). Since B is negative, we must have y € fn(U;) and thus
(ih.) there is B € AY% with B Lﬁl. If w # y then B j,ﬂ' with B € AY, hence ((2)). If w = y, then B(y) is a negative
action. Since A + ¢ : B> A with A negative or 0, we must have ¢ # nil, with ¢ = v@q’ and v a value of the appropriate
type for the action B(y). Hence (B, H’) = (P’, H"”) = C by one of the (forwarding or negative) transition rules for the
concurrent SAM (Figure 22) and we conclude ((1)) as above. O

LEMMA 7.4 (CSAM-CLLB STEP SAFETY). Let P +-B 0 and ence(P) a ready SAM configuration. If encc(P) is live then (1)

ences* cuts

there is C ready such that ence(P) = C and (2) there is Q such thatP —B Q andQ = C & ence(Q).

Proor. By Lemma 10.11, by setting ({P}, 0) = (N, H), and noting that Lemma 10.11(2) cannot hold for fn(P) = 0. O
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